Suppr超能文献

PPIxGPN:基于蛋白质-蛋白质相互作用的可解释图传播网络对神经退行性生物标志物进行血浆蛋白质组学分析

PPIxGPN: plasma proteomic profiling of neurodegenerative biomarkers with protein-protein interaction-based eXplainable graph propagational network.

作者信息

Park Sunghong, Lee Dong-Gi, Kim Juhyeon, Kim Seung Ho, Hwang Hyeon Jin, Shin Hyunjung, Woo Hyun Goo

机构信息

Department of Physiology, Ajou University School of Medicine, Worldcup-ro 164, Yeongtong-gu, Suwon, 16499, Republic of Korea.

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf213.

Abstract

Neurodegenerative diseases involve progressive neuronal dysfunction, requiring the identification of specific pathological features for accurate diagnosis. While cerebrospinal fluid analysis and neuroimaging are commonly used, their invasive nature and high costs limit clinical applicability. Recently advances in plasma proteomics offer a less invasive and cost-effective alternative, further enhanced by machine learning (ML). However, most ML-based studies overlook synergetic effects from protein-protein interactions (PPIs), which play a key role in disease mechanisms. Although graph convolutional network and its extensions can utilize PPIs, they rely on locality-based feature aggregation, overlooking essential components and emphasizing noisy interactions. Moreover, expanding those methods to cover broader PPIs results in complex model architectures that reduce explainability, which is crucial in medical ML models for clinical decision-making. To address these challenges, we propose Protein-Protein Interaction-based eXplainable Graph Propagational Network (PPIxGPN), a novel ML model designed for plasma proteomic profiling of neurodegenerative biomarkers. PPIxGPN captures synergetic effects between proteins by integrating PPIs with independent effects of proteins, leveraging globality-based feature aggregation to represent comprehensive PPI properties. This process is implemented using a single graph propagational layer, enabling PPIxGPN to be configured by shallow architecture, thereby PPIxGPN ensures high model explainability, enhancing clinical applicability by providing interpretable outputs. Experimental validation on the UK Biobank dataset demonstrated the superior performance of PPIxGPN in neurodegenerative risk prediction, outperforming comparison methods. Furthermore, the explainability of PPIxGPN facilitated detailed analyses of the discriminative significance of synergistic effects, the predictive importance of proteins, and the longitudinal changes in biomarker profiles, highlighting its clinical relevance.

摘要

神经退行性疾病涉及神经元功能的进行性衰退,需要识别特定的病理特征以进行准确诊断。虽然脑脊液分析和神经影像学是常用的方法,但它们的侵入性和高成本限制了临床应用。最近血浆蛋白质组学的进展提供了一种侵入性较小且成本效益较高的替代方法,机器学习(ML)进一步增强了这种方法。然而,大多数基于ML的研究忽略了蛋白质-蛋白质相互作用(PPI)的协同效应,而PPI在疾病机制中起着关键作用。尽管图卷积网络及其扩展可以利用PPI,但它们依赖于基于局部性的特征聚合,忽略了重要成分并强调了有噪声的相互作用。此外,将这些方法扩展以涵盖更广泛的PPI会导致复杂的模型架构,从而降低了可解释性,而可解释性在用于临床决策的医学ML模型中至关重要。为了应对这些挑战,我们提出了基于蛋白质-蛋白质相互作用的可解释图传播网络(PPIxGPN),这是一种新颖的ML模型,专为神经退行性生物标志物的血浆蛋白质组学分析而设计。PPIxGPN通过将PPI与蛋白质的独立效应相结合来捕获蛋白质之间的协同效应,利用基于全局的特征聚合来表示全面的PPI属性。这个过程使用单个图传播层来实现,使PPIxGPN能够通过浅层架构进行配置,从而确保PPIxGPN具有高模型可解释性,通过提供可解释的输出增强临床适用性。在英国生物银行数据集上的实验验证表明,PPIxGPN在神经退行性风险预测方面具有卓越的性能,优于比较方法。此外,PPIxGPN的可解释性有助于对协同效应的判别意义、蛋白质的预测重要性以及生物标志物谱的纵向变化进行详细分析,突出了其临床相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a6/12121361/ad12201da2f5/bbaf213f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验