Suppr超能文献

青光眼生成器:用于广义青光眼阶段分类的双域全局Transformer网络

Glaucoformer: Dual-domain Global Transformer Network for Generalized Glaucoma Stage Classification.

作者信息

Das Dipankar, Nayak Deepak Ranjan, Pachori Ram Bilas

出版信息

IEEE J Biomed Health Inform. 2025 May 29;PP. doi: 10.1109/JBHI.2025.3574997.

Abstract

Classification of glaucoma stages remains challenging due to substantial inter-stage similarities, the presence of irrelevant features, and subtle lesion size, shape, and color variations in fundus images. For this purpose, few efforts have recently been made using traditional machine learning and deep learning models, specifically convolutional neural networks (CNN). While the conventional CNN models capture local contextual features within fixed receptive fields, they fail to exploit global contextual dependencies. Transformers, on the other hand, are capable of modeling global contextual information. However, they lack the ability to capture local contexts and merely focus on performing attention in the spatial domain, ignoring feature analysis in the frequency domain. To address these issues, we present a novel dual-domain global transformer network, Glaucoformer, to effectively classify glaucoma stages. Specifically, we propose a dual-domain global transformer layer (DGTL) consisting of dual-domain channel attention (DCA) and dual-domain spatial attention (DSA) with Fourier domain feature analyzer (FDFA) as the core component and integrated with a backbone. This helps in exploiting local and global contextual feature dependencies in both spatial and frequency domains, thereby learning prominent and discriminant feature representations. A shared key-query scheme is introduced to learn complementary features while reducing the parameters. In addition, the DGTL leverages the benefits of a deformable convolution to enable the model to handle complex lesion irregularities. We evaluate our method on a benchmark dataset, and the experimental results and extensive comparisons with existing CNN and vision transformer-based approaches indicate its effectiveness for glaucoma stage classification. Also, the results on an unseen dataset demonstrate the generalizability of the model.

摘要

由于青光眼各阶段之间存在显著的相似性、存在无关特征以及眼底图像中病变的大小、形状和颜色变化细微,青光眼阶段的分类仍然具有挑战性。为此,最近很少有人使用传统机器学习和深度学习模型,特别是卷积神经网络(CNN)来进行相关研究。虽然传统的CNN模型能够在固定的感受野内捕捉局部上下文特征,但它们无法利用全局上下文依赖关系。另一方面,Transformer能够对全局上下文信息进行建模。然而,它们缺乏捕捉局部上下文的能力,仅仅专注于在空间域中执行注意力操作,而忽略了频域中的特征分析。为了解决这些问题,我们提出了一种新颖的双域全局Transformer网络Glaucoformer,以有效地对青光眼阶段进行分类。具体来说,我们提出了一种双域全局Transformer层(DGTL),它由双域通道注意力(DCA)和双域空间注意力(DSA)组成,以傅里叶域特征分析器(FDFA)为核心组件,并与主干网络集成。这有助于在空间和频域中利用局部和全局上下文特征依赖关系,从而学习突出的和有区分力的特征表示。引入了一种共享的键值查询方案来学习互补特征,同时减少参数。此外,DGTL利用了可变形卷积的优势,使模型能够处理复杂的病变不规则性。我们在一个基准数据集上评估了我们的方法,实验结果以及与现有基于CNN和视觉Transformer的方法的广泛比较表明了其在青光眼阶段分类中的有效性。此外,在一个未见数据集上的结果证明了该模型的泛化能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验