Suppr超能文献

GT-Net:用于使用磁共振图像进行多类脑肿瘤分类的全局变压器网络。

GT-Net: global transformer network for multiclass brain tumor classification using MR images.

作者信息

Dutta Tapas Kumar, Nayak Deepak Ranjan, Pachori Ram Bilas

机构信息

School of Computer Science and Electronic Engineering, University of Surrey, Guildford, GU27XH United Kingdom.

Department of Computer Science and Engineering, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017 India.

出版信息

Biomed Eng Lett. 2024 May 31;14(5):1069-1077. doi: 10.1007/s13534-024-00393-0. eCollection 2024 Sep.

Abstract

Multiclass classification of brain tumors from magnetic resonance (MR) images is challenging due to high inter-class similarities. To this end, convolution neural networks (CNN) have been widely adopted in recent studies. However, conventional CNN architectures fail to capture the small lesion patterns of brain tumors. To tackle this issue, in this paper, we propose a global transformer network dubbed GT-Net for multiclass brain tumor classification. The GT-Net mainly comprises a global transformer module (GTM), which is introduced on the top of a backbone network. A generalized self-attention block (GSB) is proposed to capture the feature inter-dependencies not only across spatial dimension but also channel dimension, thereby facilitating the extraction of the detailed tumor lesion information while ignoring less important information. Further, multiple GSB heads are used in GTM to leverage global feature dependencies. We evaluate our GT-Net on a benchmark dataset by adopting several backbone networks, and the results demonstrate the effectiveness of GTM. Further, comparison with state-of-the-art methods validates the superiority of our model.

摘要

由于脑肿瘤在磁共振(MR)图像中的类间相似度较高,因此对其进行多类别分类具有挑战性。为此,卷积神经网络(CNN)在最近的研究中得到了广泛应用。然而,传统的CNN架构无法捕捉脑肿瘤的小病灶模式。为了解决这个问题,在本文中,我们提出了一种名为GT-Net的全局Transformer网络用于多类别脑肿瘤分类。GT-Net主要由一个全局Transformer模块(GTM)组成,该模块被引入到骨干网络的顶部。我们提出了一种广义自注意力块(GSB),它不仅可以跨空间维度捕捉特征间的依赖关系,还可以跨通道维度捕捉特征间的依赖关系,从而在忽略不太重要信息的同时,促进详细肿瘤病灶信息的提取。此外,GTM中使用了多个GSB头来利用全局特征依赖关系。我们通过采用几种骨干网络在一个基准数据集上评估了我们的GT-Net,结果证明了GTM的有效性。此外,与现有方法的比较验证了我们模型的优越性。

相似文献

本文引用的文献

2
UniFormer: Unifying Convolution and Self-Attention for Visual Recognition.统一卷积与自注意力机制用于视觉识别的UniFormer
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):12581-12600. doi: 10.1109/TPAMI.2023.3282631. Epub 2023 Sep 5.
3
BoostCaps: A Boosted Capsule Network for Brain Tumor Classification.BoostCaps:一种用于脑肿瘤分类的增强胶囊网络。
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1075-1079. doi: 10.1109/EMBC44109.2020.9175922.
5
Brain tumor classification for MR images using transfer learning and fine-tuning.基于迁移学习和微调的磁共振图像脑肿瘤分类。
Comput Med Imaging Graph. 2019 Jul;75:34-46. doi: 10.1016/j.compmedimag.2019.05.001. Epub 2019 May 18.
6
Fine-Tuning CNN Image Retrieval with No Human Annotation.无人工标注微调卷积神经网络图像检索。
IEEE Trans Pattern Anal Mach Intell. 2019 Jul;41(7):1655-1668. doi: 10.1109/TPAMI.2018.2846566. Epub 2018 Jun 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验