Suppr超能文献

利用追回的脱落数据对事件时间终点缺失数据进行插补。

Imputation of Missing Data for Time-to-Event Endpoints Using Retrieved Dropouts.

机构信息

Pfizer Inc., 1 Portland St, Cambridge, MA, 02139, USA.

Pfizer Inc., 66 Hudson Blvd, New York, NY, 10001, USA.

出版信息

Ther Innov Regul Sci. 2024 Jan;58(1):114-126. doi: 10.1007/s43441-023-00575-5. Epub 2023 Oct 7.

Abstract

We have explored several statistical approaches to impute missing time-to-event data that arise from outcome trials with relatively long follow-up periods. Aligning with the primary estimand, such analyses evaluate the robustness of results by imposing an assumption different from censoring at random (CAR). Although there have been debates over which assumption and which method is more appropriate to be applied to the imputation, we propose to use the collection of retrieved dropouts as the basis of missing data imputation. As retrieved dropouts share a similar disposition, such as treatment discontinuation, with subjects who have missing data, they can reasonably be assumed to characterize the distribution of time-to-event among subjects with missing data. In terms of computational intensity and robustness to violation of underlying distributional assumption, we have compared parametric approaches via MCMC or MLE multivariate sampling procedures to a non-parametric bootstrap approach with respect to baseline hazard function. Each of these approaches follows a process of multiple imputation ("proper imputations"), analysis of complete datasets, and final combination. The type-I error, and power rates are examined under a wide range of scenarios to inform the performance characteristics. A subset of a real unblinded phase III CVOT is used to demonstrate the application of the proposed approaches, compared to the Cox proportional hazards model and jump-to-reference multiple imputation.

摘要

我们已经探索了几种统计方法来估算来自具有相对较长随访期的结局试验的缺失生存时间数据。这些分析与主要的估计量一致,通过施加不同于随机删失(CAR)的假设来评估结果的稳健性。虽然对于哪种假设和哪种方法更适合应用于插补存在争议,但我们建议使用检索到的失访者集合作为缺失数据插补的基础。由于检索到的失访者与缺失数据的受试者具有相似的处置,例如治疗中断,因此可以合理地假设它们可以描述缺失数据受试者的生存时间分布。在计算强度和对基础分布假设违反的稳健性方面,我们比较了参数方法,通过 MCMC 或 MLE 多元抽样程序,与基于基线风险函数的非参数引导方法。这些方法中的每一种都遵循多次插补(“适当插补”)、完整数据集分析和最终组合的过程。在广泛的场景下检查了Ⅰ型错误和功效率,以告知性能特征。使用真实的非盲 III 期 CVOT 的一个子集来演示所提出的方法的应用,与 Cox 比例风险模型和跳跃参考多重插补进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e86/10764582/d0a10503dfcf/43441_2023_575_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验