van Lieshout Glenn Aa, Trommelen Jorn, Hendriks Floris K, Nyakayiru Jean, van Kranenburg Janneau, Senden Joan M, Goessens Joy Pb, Verdijk Lex B, Bragt Marjolijn Ce, van Loon Luc Jc
Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands; FrieslandCampina, Amersfoort, the Netherlands.
Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands.
J Nutr. 2025 Jul;155(7):2215-2226. doi: 10.1016/j.tjnut.2025.05.032. Epub 2025 May 27.
Industrial processing and storage of milk products can strongly increase protein glycation level. Previously, we have reported that a high protein glycation level impairs protein digestion, thereby compromising lysine bioavailability. The lower postprandial lysine availability may restrict the anabolic properties of a high glycated protein.
The objective of this study was to assess the impact of milk protein glycation on postprandial plasma amino acid availability and subsequent postprandial muscle protein synthesis rates during recovery from a single bout of resistance-type exercise.
Forty-five recreationally active, healthy young males participated in this double-blinded, randomized parallel study. After performing a single bout of whole-body resistance-type exercise, subjects ingested 20 g milk protein with either a low (4%; LOW-GLYC) or high (47%; HIGH-GLYC) glycation level or a noncaloric placebo (PLA). Continuous intravenous infusion of L-[ring-C]-phenylalanine was combined with the collection of blood and muscle tissue samples during a 6-h postprandial period to assess plasma amino acid concentrations and muscle protein synthesis rates.
Protein ingestion increased plasma total and essential amino acid concentrations compared with placebo (time × treatment interaction: P < 0.001), with no differences between the low and high glycated milk protein. Plasma lysine availability, assessed over the full 6 h postprandial period, was substantially lower following ingestion of the protein with the high versus low glycation level (-5 ± 7 compared with 10 ± 9 mmol · L · 360 min, respectively, P < 0.001). Postprandial muscle protein synthesis rates did not differ between treatments (0.059 ± 0.016, 0.061 ± 0.012, and 0.061 ± 0.018 % · h, in LOW-GLYC, HIGH-GLYC and PLA, respectively, P = 0.939).
Ingestion of protein with a higher glycation level attenuates postprandial plasma lysine availability. Milk protein glycation does not modulate postprandial muscle protein synthesis rates during recovery from resistance exercise in healthy, young males. This trial was registered at the Dutch Trial Register as NL8690; https://onderzoekmetmensen.nl/nl/trial/49398.
乳制品的工业加工和储存会显著提高蛋白质糖基化水平。此前,我们曾报道高蛋白糖基化水平会损害蛋白质消化,从而降低赖氨酸的生物利用率。餐后赖氨酸利用率降低可能会限制高糖基化蛋白质的合成代谢特性。
本研究旨在评估牛奶蛋白糖基化对单次抗阻运动恢复期间餐后血浆氨基酸利用率以及随后餐后肌肉蛋白合成率的影响。
45名健康、有运动习惯的年轻男性参与了这项双盲、随机平行研究。在进行单次全身抗阻运动后,受试者摄入20克糖基化水平低(4%;低糖基化组)或高(47%;高糖基化组)的牛奶蛋白或无热量安慰剂(安慰剂组)。在餐后6小时内,持续静脉输注L-[环-C]-苯丙氨酸,并采集血液和肌肉组织样本,以评估血浆氨基酸浓度和肌肉蛋白合成率。
与安慰剂相比,摄入蛋白质后血浆总氨基酸和必需氨基酸浓度升高(时间×处理交互作用:P<0.001),低糖基化和高糖基化牛奶蛋白之间无差异。在餐后6小时内评估的血浆赖氨酸利用率,高糖基化水平蛋白质摄入后显著低于低糖基化水平蛋白质摄入后(分别为-5±7与10±9毫摩尔·升·360分钟,P<0.001)。各处理组餐后肌肉蛋白合成率无差异(低糖基化组、高糖基化组和安慰剂组分别为0.059±0.016、0.061±0.012和0.061±0.018%·小时,P = 0.939)。
摄入糖基化水平较高的蛋白质会降低餐后血浆赖氨酸利用率。在健康年轻男性从抗阻运动恢复期间,牛奶蛋白糖基化不会调节餐后肌肉蛋白合成率。本试验已在荷兰试验注册中心注册,注册号为NL8690;https://onderzoekmetmensen.nl/nl/trial/49398。