Suppr超能文献

氧掺杂碳负载钯纳米颗粒促进了酚类和二苯醚串联加氢-缩醛化-氢解为环己基醚的反应。

Oxygen-doped carbon-supported palladium nanoparticles boost the tandem hydrogenation-acetalization-hydrogenolysis of phenols and diphenyl ethers to cyclohexyl ethers.

作者信息

Jiang Lang, Li Xiang, Ma Yiqian, Hua Yiliang, Peng Yicheng, Ma Mengxiang, Shi Chengxiang, Wang Jun, Zou Ji-Jun, Deng Qiang

机构信息

School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, P. R. China.

College of Forestry, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, P. R. China.

出版信息

Nat Commun. 2025 May 29;16(1):4997. doi: 10.1038/s41467-025-60268-5.

Abstract

The one-pot hydrotreatment of phenols to cyclohexyl ethers is crucial but difficult to achieve for fine chemical synthesis owing to the easy overhydrogenation to cyclohexanols over traditional metal-acid bifunctional catalysts. Herein, surface oxygen-doped carbon-supported Pd nanoparticles (Pd/C-O) were prepared via nitric acid oxidation and subsequent incipient wetness impregnation, demonstrating the tandem hydrogenation-acetalization-hydrogenolysis route of phenol to cyclohexyl methyl ether, achieving an significant yield of 97.9% in a methanol solvent at a low temperature of 110 °C. Catalytic mechanism investigation indicated that the in situ hydrogen spillover from Pd nanoparticles to the Pd-O-C interface formed H-H pairs, which acted as uncommon active sites for hydrogenation and hydrogenolysis steps and also provided Brønsted acid sites for the acetalization step, thereby triggering the facile preparation of cyclohexyl methyl ether. Furthermore, the prepared catalyst exhibited excellent catalytic generality for synthesizing cyclohexyl ethers from various phenols or alcohol solvents via a similar reaction route and great expansibility from diphenyl ethers via preliminary partial hydrogenation-alcoholysis steps. The study reports an interesting bifunctional catalysis for challenging tandem reaction routes toward cyclohexyl ether synthesis by harnessing an oxygen-doped carbon support to form transient H-H pairs.

摘要

在精细化学品合成中,将苯酚一锅法加氢处理为环己基醚至关重要,但由于在传统金属 - 酸双功能催化剂上容易过度氢化为环己醇,所以难以实现。在此,通过硝酸氧化和随后的初湿浸渍制备了表面氧掺杂碳负载的钯纳米颗粒(Pd/C - O),证明了苯酚到环己基甲基醚的串联加氢 - 缩醛化 - 氢解路线,在110℃的低温下于甲醇溶剂中实现了97.9%的高收率。催化机理研究表明,原位氢从钯纳米颗粒溢出到Pd - O - C界面形成H - H对,其作为加氢和氢解步骤中罕见的活性位点,同时也为缩醛化步骤提供了布朗斯特酸位点,从而实现了环己基甲基醚的简便制备。此外,所制备的催化剂通过类似的反应路线从各种苯酚或醇溶剂合成环己基醚时表现出优异的催化通用性,并且通过初步的部分氢化 - 醇解步骤从二苯醚出发具有很大的可扩展性。该研究报道了一种有趣的双功能催化,通过利用氧掺杂碳载体形成瞬态H - H对,实现了具有挑战性的串联反应路线来合成环己基醚。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验