Chen Xu, Kiziroglou Michail E, Yeatman Eric M
Department of Electrical and Electronic Engineering, Imperial College London, London, UK.
Department of Industrial Engineering and Management, International Hellenic University, Thessaloniki, Greece.
Microsyst Nanoeng. 2025 May 29;11(1):112. doi: 10.1038/s41378-025-00955-x.
Precision motion actuation is a key technology for miniature medical robotics in a variety of applications, such as optical fibre-based diagnosis and intervention tools. Conventional inductive actuation mechanisms are challenging to scale down. Piezoelectric materials offer a scalable, precise, fast and high-force method but at a limited displacement range. In previous work, the combination of piezoelectric beams (benders) with compliant motion translation structures has been shown to be promising for robotic micro-actuation. In this paper, this approach is employed to implement a three degrees of freedom delta robot, suitable for catheter, diagnostic optical fibre and microsurgery tool manipulation. The fabrication process combines additive manufacturing, origami structuring and piezoelectric beam assembly. Closed-loop control is implemented using a new, on-board visual feedback concept. In contrast to typical optical motion systems, the fully internal visual feedback offers system compactness with precise and reliable camera-to-marker geometry definition. By employment of this method, a delta robot with motion accuracy of 7.5 μm, resolution of 10 μm and 8.1 μm precision is demonstrated. The robot is shown to follow a range of programmable trajectories under these specifications, and to compensate for externally applied forces typically expected during microsurgery manipulations. This is the first, to our knowledge, demonstration of micromotion control using internal visual feedback, and it opens up the way for high-resolution compact microrobots.
精确运动驱动是微型医疗机器人在各种应用中的一项关键技术,例如基于光纤的诊断和干预工具。传统的感应驱动机制在缩小尺寸方面具有挑战性。压电材料提供了一种可扩展、精确、快速且高力的方法,但位移范围有限。在先前的工作中,压电梁(弯曲器)与柔顺运动转换结构的结合已被证明在机器人微驱动方面很有前景。在本文中,采用这种方法来实现一个三自由度的delta机器人,适用于导管、诊断光纤和显微手术工具的操作。制造过程结合了增材制造、折纸结构和压电梁组装。使用一种新的板载视觉反馈概念实现闭环控制。与典型的光学运动系统相比,全内置视觉反馈提供了系统紧凑性以及精确且可靠的相机到标记的几何定义。通过采用这种方法,展示了一个运动精度为7.5μm、分辨率为10μm且精度为8.1μm的delta机器人。该机器人在这些规格下能够遵循一系列可编程轨迹,并补偿显微手术操作中通常预期的外部施加力。据我们所知,这首次展示了使用内部视觉反馈的微运动控制,为高分辨率紧凑型微型机器人开辟了道路。