Xu Junling, Xie Fuqiang, Huang Lipeng, Li Nana, Peng Shang, Ma Wensheng, Zhang Kai, Wu Yanxue, Shao Lianyi, Shi Xiaoyan, Chen Jizhang, Tao Li, Zhang Kai, Zhang Zhonghua, Wang Yonggang, Sun Zhipeng
School of Materials and Energy, Guangdong University of Technology, Guangzhou, China.
Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China.
Nat Commun. 2025 May 29;16(1):4977. doi: 10.1038/s41467-025-60186-6.
Doping is an important approach to tailor materials' properties, yet the success of doping can depend on factors such as ionic radii similarities. For materials like silicon or perovskite, doping is not only facile to implement but can also enhance material properties. However, for host lattice structures like NbO, doping without causing phase change is challenging. Here, we introduce a high-entropy-doping effect in NbO. Unlike traditional doping approaches, high-entropy-doping minimizes the chemical properties of doping elements and focuses solely on their quantities. By high-entropizing the doping elements (selecting 10-15 from Mg, Ca, Sr, Ba, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, In, Sn, Sb, Y, Mo, La, Ce) and keeping them within a certain range of doping concentrations (1-3 %), a successful high-entropy-doping is achieved for NbO without phase change. The obtained high-entropy-doped (HED) NbO exhibits rapid-charging capabilities. At a rate of 40 A g, the HED-NbO delivers a capacity of 80 mAh g, whereas the undoped NbO fails to exceed 25 mAh g.
掺杂是调整材料性能的重要方法,然而掺杂的成功与否可能取决于离子半径相似性等因素。对于硅或钙钛矿等材料,掺杂不仅易于实施,还能增强材料性能。然而,对于像NbO这样的主体晶格结构,在不引起相变的情况下进行掺杂具有挑战性。在此,我们在NbO中引入了高熵掺杂效应。与传统掺杂方法不同,高熵掺杂使掺杂元素的化学性质最小化,仅关注其数量。通过对掺杂元素进行高熵化处理(从Mg、Ca、Sr、Ba、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Ga、In、Sn、Sb、Y、Mo、La、Ce中选择10 - 15种)并将它们保持在一定的掺杂浓度范围内(1 - 3%),在不发生相变的情况下成功实现了对NbO的高熵掺杂。所获得的高熵掺杂(HED)NbO展现出快速充电能力。在40 A g的电流密度下,HED - NbO的容量为80 mAh g,而未掺杂的NbO容量未能超过25 mAh g。