Suppr超能文献

高倍率锂离子负极中单个颗粒充电状态异质性和开裂的原位监测

Operando monitoring of single-particle kinetic state-of-charge heterogeneities and cracking in high-rate Li-ion anodes.

作者信息

Merryweather Alice J, Jacquet Quentin, Emge Steffen P, Schnedermann Christoph, Rao Akshay, Grey Clare P

机构信息

Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.

Cavendish Laboratory, University of Cambridge, Cambridge, UK.

出版信息

Nat Mater. 2022 Nov;21(11):1306-1313. doi: 10.1038/s41563-022-01324-z. Epub 2022 Aug 15.

Abstract

To rationalize and improve the performance of newly developed high-rate battery electrode materials, it is crucial to understand the ion intercalation and degradation mechanisms occurring during realistic battery operation. Here we apply a laboratory-based operando optical scattering microscopy method to study micrometre-sized rod-like particles of the anode material NbWO during high-rate cycling. We directly visualize elongation of the particles, which, by comparison with ensemble X-ray diffraction, allows us to determine changes in the state of charge of individual particles. A continuous change in scattering intensity with state of charge enables the observation of non-equilibrium kinetic phase separations within individual particles. Phase field modelling (informed by pulsed-field-gradient nuclear magnetic resonance and electrochemical experiments) supports the kinetic origin of this separation, which arises from the state-of-charge dependence of the Li-ion diffusion coefficient. The non-equilibrium phase separations lead to particle cracking at high rates of delithiation, particularly in longer particles, with some of the resulting fragments becoming electrically disconnected on subsequent cycling. These results demonstrate the power of optical scattering microscopy to track rapid non-equilibrium processes that would be inaccessible with established characterization techniques.

摘要

为了合理化并提高新开发的高倍率电池电极材料的性能,了解实际电池运行过程中发生的离子嵌入和降解机制至关重要。在此,我们应用基于实验室的原位光学散射显微镜方法,研究阳极材料NbWO在高倍率循环过程中的微米级棒状颗粒。我们直接观察到颗粒的伸长,通过与整体X射线衍射对比,这使我们能够确定单个颗粒的荷电状态变化。散射强度随荷电状态的连续变化,使得能够观察到单个颗粒内的非平衡动力学相分离。相场建模(由脉冲场梯度核磁共振和电化学实验提供信息)支持这种分离的动力学起源,它源于锂离子扩散系数对荷电状态的依赖性。非平衡相分离导致在高脱锂速率下颗粒开裂,特别是在较长的颗粒中,一些产生的碎片在随后的循环中变得电断开。这些结果证明了光学散射显微镜跟踪快速非平衡过程的能力,而这些过程是现有表征技术无法实现的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验