Duan Minghong, Qu Linhao, Yang Zhiwei, Wang Manning, Zhang Chenxi, Song Zhijian
Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai, 200032, China.
Sci Rep. 2025 May 29;15(1):18883. doi: 10.1038/s41598-025-02503-z.
High-quality whole-slide scanning is expensive, complex, and time-consuming, thus limiting the acquisition and utilization of high-resolution histopathology images in daily clinical work. Deep learning-based single-image super-resolution (SISR) techniques provide an effective way to solve this problem. However, the existing SISR models applied in histopathology images can only work in fixed integer scaling factors, decreasing their applicability. Though methods based on implicit neural representation (INR) have shown promising results in arbitrary-scale super-resolution (SR) of natural images, applying them directly to histopathology images is inadequate because they have unique fine-grained image textures different from natural images. Thus, we propose an Implicit Self-Texture Enhancement-based dual-branch framework (ISTE) for arbitrary-scale SR of histopathology images to address this challenge. The proposed ISTE contains a feature aggregation branch and a texture learning branch. We employ the feature aggregation branch to enhance the learning of the local details for SR images while utilizing the texture learning branch to enhance the learning of high-frequency texture details. Then, we design a two-stage texture enhancement strategy to fuse the features from the two branches to obtain the SR images. Experiments on publicly available datasets, including TMA, HistoSR, and the TCGA lung cancer datasets, demonstrate that ISTE outperforms existing fixed-scale and arbitrary-scale SR algorithms across various scaling factors. Additionally, extensive experiments have shown that the histopathology images reconstructed by the proposed ISTE are applicable to downstream pathology image analysis tasks.
高质量的全切片扫描成本高昂、过程复杂且耗时,因此限制了高分辨率组织病理学图像在日常临床工作中的获取和利用。基于深度学习的单图像超分辨率(SISR)技术为解决这一问题提供了有效途径。然而,现有的应用于组织病理学图像的SISR模型只能在固定的整数缩放因子下工作,降低了其适用性。尽管基于隐式神经表示(INR)的方法在自然图像的任意尺度超分辨率(SR)中显示出了有前景的结果,但直接将它们应用于组织病理学图像并不合适,因为组织病理学图像具有与自然图像不同的独特细粒度图像纹理。因此,我们提出了一种基于隐式自纹理增强的双分支框架(ISTE),用于组织病理学图像的任意尺度SR,以应对这一挑战。所提出的ISTE包含一个特征聚合分支和一个纹理学习分支。我们利用特征聚合分支来增强对SR图像局部细节的学习,同时利用纹理学习分支来增强对高频纹理细节的学习。然后,我们设计了一种两阶段纹理增强策略,将来自两个分支的特征融合以获得SR图像。在包括TMA、HistoSR和TCGA肺癌数据集在内的公开可用数据集上进行的实验表明,ISTE在各种缩放因子下均优于现有的固定尺度和任意尺度SR算法。此外,大量实验表明,由所提出的ISTE重建的组织病理学图像适用于下游病理图像分析任务。