Suppr超能文献

基于神经网络的肺癌 CT 扫描图像超分辨率重建方法。

Image Super-Resolution Reconstruction Method for Lung Cancer CT-Scanned Images Based on Neural Network.

机构信息

Provincial Key Laboratory of Informational Service for Rural Area of Southwestern Hunan, Shaoyang University, Shaoyang, 422000 Hunan, China.

出版信息

Biomed Res Int. 2022 Jul 18;2022:3543531. doi: 10.1155/2022/3543531. eCollection 2022.

Abstract

The super-resolution (SR) reconstruction of a single image is an important image synthesis task especially for medical applications. This paper is studying the application of image segmentation for lung cancer images. This research work is utilizing the power of deep learning for resolution reconstruction for lung cancer-based images. At present, the neural networks utilized for image segmentation and classification are suffering from the loss of information where information passes through one layer to another deep layer. The commonly used loss functions include content-based reconstruction loss and generative confrontation network. The sparse coding single-image super-resolution reconstruction algorithm can easily lead to the phenomenon of incorrect geometric structure in the reconstructed image. In order to solve the problem of excessive smoothness and blurring of the reconstructed image edges caused by the introduction of this self-similarity constraint, a two-layer reconstruction framework based on a smooth layer and a texture layer is proposed for a medical application of lung cancer. This method uses a global nonzero gradient number constrained reconstruction model to reconstruct the smooth layer. The proposed sparse coding method is used to reconstruct high-resolution texture images. Finally, a global and local optimization models are used to further improve the quality of the reconstructed image. An adaptive multiscale remote sensing image super-division reconstruction network is designed. The selective core network and adaptive gating unit are integrated to extract and fuse features to obtain a preliminary reconstruction. Through the proposed dual-drive module, the feature prior drive loss and task drive loss are transmitted to the super-resolution network. The proposed work not only improves the subjective visual effect but the robustness has also been enhanced with more accurate construction of edges. The statistical evaluators are used to test the viability of the proposed scheme.

摘要

单图像超分辨率 (SR) 重建是一项重要的图像合成任务,特别是在医学应用中。本文研究了图像分割在肺癌图像中的应用。这项研究工作利用深度学习的力量对基于肺癌的图像进行分辨率重建。目前,用于图像分割和分类的神经网络存在信息丢失的问题,信息在经过一层又一层的深层时会丢失。常用的损失函数包括基于内容的重建损失和生成对抗网络。稀疏编码单图像超分辨率重建算法很容易导致重建图像中几何结构不正确的现象。为了解决由于引入这种自相似性约束而导致的重建图像边缘过度平滑和模糊的问题,针对肺癌的医学应用,提出了一种基于平滑层和纹理层的两层重建框架。该方法使用全局非零梯度数约束重建模型来重建平滑层。采用稀疏编码方法重建高分辨率纹理图像。最后,使用全局和局部优化模型进一步提高重建图像的质量。设计了一种自适应多尺度遥感图像超分割重建网络。集成了选择性核心网络和自适应门控单元,以提取和融合特征,从而获得初步重建。通过所提出的双驱动模块,将特征先验驱动损失和任务驱动损失传输到超分辨率网络。所提出的工作不仅提高了主观视觉效果,而且通过更准确地构建边缘,增强了鲁棒性。统计评估器用于测试所提出方案的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d18d/9314153/c757431bbf30/BMRI2022-3543531.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验