Suppr超能文献

高斯随机场作为多模态医学图像分割中患者元数据的抽象表示。

Gaussian random fields as an abstract representation of patient metadata for multimodal medical image segmentation.

作者信息

Cassidy Bill, McBride Christian, Kendrick Connah, Reeves Neil D, Pappachan Joseph M, Raad Shaghayegh, Yap Moi Hoon

机构信息

Department of Computing and Mathematics, Manchester Metropolitan University, M13 9WL, Manchester, UK.

Medical School, Lancaster University, Lancaster, LA1 4YW, UK.

出版信息

Sci Rep. 2025 May 29;15(1):18810. doi: 10.1038/s41598-025-03393-x.

Abstract

Growing rates of chronic wound occurrence, especially in patients with diabetes, has become a recent concerning trend. Chronic wounds are difficult and costly to treat, and have become a serious burden on health care systems worldwide. Innovative deep learning methods for the detection and monitoring of such wounds have the potential to reduce the impact to patients and clinicians. We present a novel multimodal segmentation method which allows for the introduction of patient metadata into the training workflow whereby the patient data are expressed as Gaussian random fields. Our results indicate that the proposed method improved performance when utilising multiple models, each trained on different metadata categories. Using the Diabetic Foot Ulcer Challenge 2022 test set, when compared to the baseline results (intersection over union = 0.4670, Dice similarity coefficient = 0.5908) we demonstrate improvements of +0.0220 and +0.0229 for intersection over union and Dice similarity coefficient respectively. This paper presents the first study to focus on integrating patient data into a chronic wound segmentation workflow. Our results show significant performance gains when training individual models using specific metadata categories, followed by average merging of prediction masks using distance transforms. All source code for this study is available at: https://github.com/mmu-dermatology-research/multimodal-grf.

摘要

慢性伤口发生率不断上升,尤其是在糖尿病患者中,已成为近期一个令人担忧的趋势。慢性伤口治疗困难且成本高昂,已成为全球医疗保健系统的沉重负担。用于此类伤口检测和监测的创新深度学习方法有可能减轻对患者和临床医生的影响。我们提出了一种新颖的多模态分割方法,该方法允许将患者元数据引入训练工作流程,其中患者数据表示为高斯随机场。我们的结果表明,当使用多个模型时,所提出的方法提高了性能,每个模型都在不同的元数据类别上进行训练。使用2022年糖尿病足溃疡挑战赛测试集,与基线结果(交并比 = 0.4670,骰子相似系数 = 0.5908)相比,我们分别展示了交并比和骰子相似系数提高了+0.0220和+0.0229。本文提出了第一项专注于将患者数据集成到慢性伤口分割工作流程中的研究。我们的结果表明,当使用特定元数据类别训练单个模型,然后使用距离变换对预测掩码进行平均合并时,性能有显著提升。本研究的所有源代码可在以下网址获取:https://github.com/mmu-dermatology-research/multimodal-grf

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6580/12123013/ac8f3c80906d/41598_2025_3393_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验