Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, Canada.
Biomed Eng Online. 2024 Jan 29;23(1):12. doi: 10.1186/s12938-024-01210-6.
The escalating impact of diabetes and its complications, including diabetic foot ulcers (DFUs), presents global challenges in quality of life, economics, and resources, affecting around half a billion people. DFU healing is hindered by hyperglycemia-related issues and diverse diabetes-related physiological changes, necessitating ongoing personalized care. Artificial intelligence and clinical research strive to address these challenges by facilitating early detection and efficient treatments despite resource constraints. This study establishes a standardized framework for DFU data collection, introducing a dedicated case report form, a comprehensive dataset named Zivot with patient population clinical feature breakdowns and a baseline for DFU detection using this dataset and a UNet architecture.
Following this protocol, we created the Zivot dataset consisting of 269 patients with active DFUs, and about 3700 RGB images and corresponding thermal and depth maps for the DFUs. The effectiveness of collecting a consistent and clean dataset was demonstrated using a bounding box prediction deep learning network that was constructed with EfficientNet as the feature extractor and UNet architecture. The network was trained on the Zivot dataset, and the evaluation metrics showed promising values of 0.79 and 0.86 for F1-score and mAP segmentation metrics.
This work and the Zivot database offer a foundation for further exploration of holistic and multimodal approaches to DFU research.
糖尿病及其并发症的影响不断加剧,包括糖尿病足溃疡(DFU),给全球的生活质量、经济和资源带来了挑战,影响了约 5 亿人。DFU 的愈合受到高血糖相关问题和多种糖尿病相关生理变化的阻碍,需要持续的个性化护理。人工智能和临床研究通过促进早期检测和高效治疗来应对这些挑战,尽管资源有限。本研究通过建立一个专门的病例报告表,建立了一个标准化的 DFU 数据收集框架,引入了一个名为 Zivot 的综合数据集,该数据集对患者人群的临床特征进行了细分,并使用该数据集和 UNet 架构为 DFU 检测提供了基线。
按照该方案,我们创建了一个包含 269 名患有活动性 DFU 的患者的 Zivot 数据集,以及大约 3700 张用于 DFU 的 RGB 图像及其相应的热图和深度图。使用一个基于 EfficientNet 的特征提取器和 UNet 架构构建的边界框预测深度学习网络,证明了收集一致和干净数据集的有效性。该网络在 Zivot 数据集上进行了训练,评估指标显示 F1 分数和 mAP 分割指标的有希望的值分别为 0.79 和 0.86。
这项工作和 Zivot 数据库为进一步探索 DFU 研究的整体和多模态方法提供了基础。