Suppr超能文献

通过基于层次分类和人工智能支持向量机的认知语言模型提高隐喻理解能力。

Improvement of metaphor understanding via a cognitive linguistic model based on hierarchical classification and artificial intelligence SVM.

作者信息

Zhu Dongmei

机构信息

School of Foreign Studies, Zhongyuan University of Technology, Zhengzhou, 450007, China.

出版信息

Sci Rep. 2025 May 29;15(1):18947. doi: 10.1038/s41598-025-04171-5.

Abstract

This study aims to enhance computers' ability to understand and generate metaphors, offering a novel perspective and technical approach in the field of natural language processing. It proposes a metaphor recognition algorithm that combines a Convolutional Neural Network (CNN) with a Support Vector Machine (SVM). First, the text is transformed into numerical features using a pre-trained word embedding model. Then, local contextual features are extracted through a multi-layer CNN. These features are subsequently input into the SVM for classification, enabling optimal metaphor recognition. In English verb metaphor recognition tasks, the model-when combined with the SVM classifier-achieves an accuracy of 85%, an F1 score of 85.5%, and a recall of 86%. In Chinese metaphor recognition experiments, the integration of the SVM classifier significantly improves performance, yielding an F1 score of 81.5%, an accuracy of 81%, and a recall of 82%. In conclusion, the proposed model effectively integrates the CNN's powerful feature extraction capabilities with the SVM's superior classification performance. Additionally, it incorporates part-of-speech features to enhance semantic analysis. This integrated approach enables more accurate identification of complex textual semantics, particularly in interpreting metaphorical language that requires deeper understanding.

摘要

本研究旨在提高计算机理解和生成隐喻的能力,为自然语言处理领域提供一种新颖的视角和技术方法。它提出了一种将卷积神经网络(CNN)与支持向量机(SVM)相结合的隐喻识别算法。首先,使用预训练的词嵌入模型将文本转换为数值特征。然后,通过多层CNN提取局部上下文特征。这些特征随后被输入到SVM中进行分类,从而实现最佳的隐喻识别。在英语动词隐喻识别任务中,该模型与SVM分类器相结合时,准确率达到85%,F1分数为85.5%,召回率为86%。在中国隐喻识别实验中,SVM分类器的集成显著提高了性能,F1分数为81.5%,准确率为81%,召回率为82%。总之,所提出的模型有效地将CNN强大的特征提取能力与SVM卓越的分类性能相结合。此外,它还纳入了词性特征以增强语义分析。这种集成方法能够更准确地识别复杂的文本语义,特别是在解释需要更深入理解的隐喻性语言时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/12122933/92ccfbfe2db8/41598_2025_4171_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验