Suppr超能文献

压缩应变LaPrNiO薄膜中的超导性和正常态输运

Superconductivity and normal-state transport in compressively strained LaPrNiO thin films.

作者信息

Liu Yidi, Ko Eun Kyo, Tarn Yaoju, Bhatt Lopa, Li Jiarui, Thampy Vivek, Goodge Berit H, Muller David A, Raghu Srinivas, Yu Yijun, Hwang Harold Y

机构信息

Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.

Department of Physics, Stanford University, Stanford, CA, USA.

出版信息

Nat Mater. 2025 May 29. doi: 10.1038/s41563-025-02258-y.

Abstract

The discovery of superconductivity under high pressure in Ruddlesden-Popper phases of bulk nickelates has sparked great interest in stabilizing ambient-pressure superconductivity in the thin-film form using epitaxial strain. Recently, signs of superconductivity have been observed in compressively strained bilayer nickelate thin films with an onset temperature exceeding 40 K, although with broad, two-step-like transitions. Here we report the intrinsic superconductivity and normal-state transport properties in compressively strained LaPrNiO thin films, achieved through a combination of isovalent Pr substitution, growth optimization and precision ozone annealing. The superconducting onset occurs above 48 K, with zero resistance reached above 30 K, and the critical current density at 1.4 K is 100-fold larger than previous reports. The normal-state resistivity exhibits quadratic temperature dependence indicative of Fermi liquid behaviour, and other phenomenological similarities to transport in overdoped cuprates suggest parallels in their emergent properties.

摘要

在块状镍酸盐的Ruddlesden-Popper相高压下发现超导性,引发了人们对利用外延应变在薄膜形式中稳定常压超导性的极大兴趣。最近,在具有超过40 K起始温度的压缩应变双层镍酸盐薄膜中观察到了超导迹象,尽管转变过程宽泛且呈两步状。在此,我们报告了通过等价Pr替代、生长优化和精确臭氧退火相结合,在压缩应变的LaPrNiO薄膜中实现的本征超导性和正常态输运性质。超导起始温度出现在48 K以上,在30 K以上达到零电阻,并且在1.4 K时的临界电流密度比之前的报道大100倍。正常态电阻率呈现出表明费米液体行为的二次温度依赖性,并且与过掺杂铜酸盐中的输运在其他唯象学上的相似性表明它们在涌现性质上存在相似之处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验