Varlamova Elena G, Gudkov Sergey V, Turovsky Egor A
Institute of Cell Biophysics of the Russian Academy of Sciences, "Federal Research Center "Pushchino Scientific Center for Biological Research, Russian Academy of Sciences", 142290, Pushchino, Russia.
Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St, 119991, Moscow, Russia.
Biol Trace Elem Res. 2025 May 29. doi: 10.1007/s12011-025-04682-2.
More and more studies are appearing devoted to the possibility of using nanotechnology in the prevention and treatment of neurodegenerative processes. This study aimed to develop a technology for obtaining small and large selenium nanoparticles (SeNPs) by laser ablation of a solid target. And also to study the effects of these different-sized nanoparticles on the physiology (calcium signalling, redox status, regulation of cell death) of cortical cells in culture in toxic models of ischemia-like conditions and glutamate excitotoxicity, primarily reflecting pathological processes in the brain during injuries, strokes, and neurodegenerative diseases. In the present study, a technology for obtaining SeNPs of different sizes is presented. Using molecular biology methods, fluorescence microscopy, viability assays, and measurement of ROS production in cortical cells, differences in the effects of SeNPs were revealed in acute and chronic experiments, in models of glutamate excitotoxicity and ischemia-like conditions. SeNPs with a size of 100 nm were most effective in suppressing cell death, modulating the cellular redox status, and Ca signalling system. 10 nm-sized SeNPs enhanced cell death in toxic models by upregulating genes encoding pro-inflammatory, pro-apoptotic, and pro-oxidative proteins. Thus, when creating nanoparticles to protect brain cells, the influence of the nanoparticle diameter should be taken into account, as small nanoparticles are capable of exerting a cytotoxic effect on brain cells, and such particles are more appropriate in anticancer therapy.
越来越多的研究致力于探讨利用纳米技术预防和治疗神经退行性病变的可能性。本研究旨在开发一种通过激光烧蚀固体靶材来制备大小不同的硒纳米颗粒(SeNPs)的技术。同时,研究这些不同尺寸的纳米颗粒在模拟缺血样条件和谷氨酸兴奋性毒性的毒性模型中,对培养的皮质细胞生理功能(钙信号传导、氧化还原状态、细胞死亡调控)的影响,这些毒性模型主要反映了脑损伤、中风和神经退行性疾病期间大脑中的病理过程。在本研究中,展示了一种制备不同尺寸SeNPs的技术。通过分子生物学方法、荧光显微镜、活力测定以及测量皮质细胞中的活性氧生成,在急性和慢性实验中,以及在谷氨酸兴奋性毒性和缺血样条件模型中,揭示了SeNPs作用效果的差异。尺寸为100 nm的SeNPs在抑制细胞死亡、调节细胞氧化还原状态和钙信号系统方面最为有效。10 nm大小的SeNPs通过上调编码促炎、促凋亡和促氧化蛋白的基因,增强了毒性模型中的细胞死亡。因此,在制备用于保护脑细胞的纳米颗粒时,应考虑纳米颗粒直径的影响,因为小尺寸纳米颗粒能够对脑细胞产生细胞毒性作用,而此类颗粒在抗癌治疗中更为合适。
Biochem Biophys Res Commun. 2025-7-8
Nanomaterials (Basel). 2024-1-11