Dong Shengwei, Shi Lingfeng, Zhang Yan, Geng Shenglu, Qiang Zhuomin, Deng Biao, Sun Fei, Huo Hua, Yin Geping, Lou Shuaifeng
State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
Angew Chem Int Ed Engl. 2025 Jul 28;64(31):e202506750. doi: 10.1002/anie.202506750. Epub 2025 Jun 30.
Electric vehicles and electric aircraft demand all-climate lithium metal batteries (LMBs) with high energy density. However, the interaction mechanism between charge transfer in the solvation sheath and interfacial evolution is not yet clear. Herein, we proposed a "pseudo-charge-transfer complex" strategy by introducing an amide polymer encapsulation matrix (APEM) to construct local charge-transfer channels to solvents for tuning the negative charge center. Theoretical calculations and synchrotron X-ray tomography reveal that the APEM drags out the polar solvent and promotes cation-anion coordination in the primary solvation sheath, contributing to AGGs-dominated interfacial solvation chemistry. The designed electrolyte improves the cyclability of Li|LiNiCoMnO up to 300 cycles at 4.6 V and high-temperature capability at 80 °C. Even at -40 °C, it still delivers a high capacity of 87.9 mAh g with negligible capacity decay for 160 cycles. Industrial 3 Ah-level pouch cells over 490 Wh kg exhibit 91.3% capacity retention after 100 cycles, manifesting high potential in extreme applications.
电动汽车和电动飞机需要具有高能量密度的全气候锂金属电池(LMB)。然而,溶剂化鞘层中电荷转移与界面演化之间的相互作用机制尚不清楚。在此,我们提出了一种“伪电荷转移络合物”策略,通过引入酰胺聚合物封装基质(APEM)来构建通往溶剂的局部电荷转移通道,以调节负电荷中心。理论计算和同步加速器X射线断层扫描表明,APEM拖出极性溶剂并促进初级溶剂化鞘层中的阳离子-阴离子配位,有助于以AGGs为主的界面溶剂化化学。所设计的电解质将Li|LiNiCoMnO的循环稳定性提高到4.6 V下300次循环,并提高了80°C下的高温性能。即使在-40°C时,它仍能提供87.9 mAh g的高容量,在160次循环中容量衰减可忽略不计。超过490 Wh kg的工业3 Ah级软包电池在100次循环后容量保持率为91.3%,在极端应用中显示出高潜力。