Xiao Chenxi, Wen Peng, Luo Feiyu, Yu Dengxiang, Wang Huaijiao, Zhou Zhirong, Li Weiping, Zhang Xinxing, Lin Xinrong
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306, China.
School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202502465. doi: 10.1002/anie.202502465. Epub 2025 May 24.
The urgent need for high energy density (> 400 Wh kg) has driven advancements in lithium metal batteries (LMBs) with high-voltage cathodes. However, degradation of traditional electrolytes restricts high cut-off voltage < 4.4 V, while low lithium transference numbers (t ) lead to polarization and early charge/discharge termination, which typically necessitate use of multiple solvents or salt-concentrated electrolytes to enable high-voltage chemistry. To address this challenge, we developed a single-solvent, single-salt electrolyte with tris(2,2,2-trifluoroethyl)phosphate (TFEP), achieving a high t of 0.78 and enabling ultra-high-voltage LMB operation up to 5.0 V. Large molecular sterics and electron density delocalization of TFEP enabled dominant presence of local aggregates (AGGs), which further populated to form large and ion-rich weakly-solvating nanometric aggregates (n-AGGs), changing redox properties and promoting the interfacial stabilities to a greater extent. As a result, we showed suppressed dendrite formation with stable cycling for over 1500 h, and full-cell operations paired with LiNiMnCoO (NCM811) at 4.7 V and with LiNiMnO (LNMO) at 5.0 V. The tuning of bulk electrolyte properties from the scale of microscopic electronic structures to mesoscopic solvation structures has effectively enhanced thermodynamic and kinetic stabilities of the electrolyte, paving the way for LMBs with high-voltage tolerance.
对高能量密度(>400 Wh kg)的迫切需求推动了具有高压阴极的锂金属电池(LMB)的发展。然而,传统电解质的降解限制了<4.4 V的高截止电压,而低锂迁移数(t )会导致极化和早期充放电终止,这通常需要使用多种溶剂或盐浓缩电解质来实现高压化学。为应对这一挑战,我们开发了一种含磷酸三(2,2,2-三氟乙基)酯(TFEP)的单溶剂、单盐电解质,实现了0.78的高t ,并能在高达5.0 V的电压下实现超高压LMB运行。TFEP的大分子空间位阻和电子密度离域使得局部聚集体(AGG)占主导地位,这些聚集体进一步聚集形成大的、富含离子的弱溶剂化纳米聚集体(n-AGG),在更大程度上改变了氧化还原性质并促进了界面稳定性。结果,我们展示了抑制枝晶形成并实现超过1500小时的稳定循环,以及在4.7 V下与LiNiMnCoO(NCM811)和在5.0 V下与LiNiMnO(LNMO)配对的全电池运行。从微观电子结构尺度到介观溶剂化结构对本体电解质性质的调控有效地提高了电解质的热力学和动力学稳定性,为具有高压耐受性的LMBs铺平了道路。