Suppr超能文献

用于高压锂金属电池的超低温羧酸盐电解质

Ultralow-Temperature Carboxylate Electrolyte for High-Voltage Lithium Metal Batteries.

作者信息

Kong Weilong, Zhang Heng, Zhou Yuxin, Xue Yejuan, Jiang Longjin, Xiang Hongfa, Huang Zhimei

机构信息

School of Materials Science and Engineering; Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei 230009, China.

Anhui ChaoYue Environmental Protection Technology Co., Ltd., Chuzhou 230009, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 9;17(27):39226-39234. doi: 10.1021/acsami.5c08517. Epub 2025 Jun 26.

Abstract

Carbonate-based electrolytes possess high oxidative stability and solvation ability to Li in Li metal batteries (LMBs). However, they face significant challenges under cryogenic temperatures, including the sluggish reaction kinetics, uneven Li deposition, and severe interfacial side reactions, especially under the elevated cutoff voltages. Carboxylates usually have lower viscosity and freezing points. However, they still face low oxidative stability and poor film-forming ability. Herein, we designed an ultralow-temperature electrolyte by using a gamma-butyrolactone (GBL) and isobutyronitrile (iBN) mixed electrolyte to be used in high-voltage LMBs. The result demonstrated that the participation of iBN in the Li solvation structure could greatly improve the ion transfer kinetics and oxidation stability of the electrolyte through the interaction of C≡N with transition metal on the cathode. Combined with the lithium nitrate (LiNO) additive, the tame electrolyte exhibits high interfacial stability at a temperature range of -60 to -20 °C by forming dense and highly ionic conductive interfacial films. The assembled Li||LiNiCoMnO cell delivered a capacity of 88.8 mAh g and retained a 77.2% capacity retention after 450 cycles under -40 °C and a 4.5 V cutoff voltage. Even if the temperature decreased to -50 °C, it could still express a capacity of 89.7 mAh g with a 99% capacity retention for 50 cycles, surpassing most of the works involving carbonate-based electrolytes. Therefore, combining the superiorities of carboxylate and nitrile solvents provides a promising electrolyte design insight for the ultralow-temperature LMBs.

摘要

基于碳酸盐的电解质在锂金属电池(LMBs)中具有高氧化稳定性和对锂的溶剂化能力。然而,它们在低温下面临重大挑战,包括反应动力学迟缓、锂沉积不均匀以及严重的界面副反应,特别是在较高的截止电压下。羧酸盐通常具有较低的粘度和凝固点。然而,它们仍然面临氧化稳定性低和成膜能力差的问题。在此,我们设计了一种超低温电解质,通过使用γ-丁内酯(GBL)和异丁腈(iBN)混合电解质用于高压LMBs。结果表明,iBN参与锂溶剂化结构可以通过C≡N与阴极上过渡金属的相互作用极大地改善电解质的离子转移动力学和氧化稳定性。结合硝酸锂(LiNO)添加剂,这种温和的电解质通过形成致密且具有高离子导电性的界面膜,在-60至-20°C的温度范围内表现出高界面稳定性。组装的Li||LiNiCoMnO电池在-40°C和4.5V截止电压下提供了88.8 mAh g的容量,并且在450次循环后保持了77.2%的容量保持率。即使温度降至-50°C,它仍然可以表现出89.7 mAh g的容量,在50次循环中容量保持率为99%,超过了大多数涉及基于碳酸盐电解质的研究工作。因此,结合羧酸盐和腈类溶剂的优势为超低温LMBs提供了一种有前景的电解质设计思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验