Suppr超能文献

深入了解聚乙二醇介导的盐胁迫下L.的物理化学、营养和抗氧化防御调节作用

Insight into polyethylene glycol-mediated physiochemical, nutritional, and antioxidative defense modulations in salt-stressed L.

作者信息

Sajid Muhammad, Ahmed Shakil, Sardar Rehana, Yasin Nasim Ahmad

机构信息

Institute of Botany, University of the Punjab, Lahore, Pakistan.

Department of Botany, Emerson University, Multan, Pakistan.

出版信息

Physiol Mol Biol Plants. 2025 Apr;31(4):659-674. doi: 10.1007/s12298-025-01585-3. Epub 2025 Apr 17.

Abstract

UNLABELLED

Salinity is one of the most crucial factors that impede various morphological and physiological parameters, eventually reducing crop production. Chemical and physical weathering, in addition to poor irrigation practices, enhances soil salinity. Radish ( L), a leafy and root vegetable, is cultivated worldwide because of its nutritional value. However, salinity poses a serious threat to its productivity. Polyethylene glycol (PEG) is mainly used to induce and study osmotic stress in plants. However, our novel research work was designed to observe the stress-mitigating potential of PEG (10%, 20%, 30%, and 40% PEG) in subjected to salinity stress (200 mM NaCl). Salt toxicity significantly reduced the seed germination (61.03%), seedling vigor index (54.25%), total soluble protein (69.23%), and biomass accumulation (42.25%) of plants. Similarly, stressed plants presented a reduced synthesis of photosynthetic pigments and poor nutrition. However, seed priming with PEG-30% significantly alleviated salt stress by promoting growth attributes, mineral uptake, and the antioxidative defence system of under salinity regimes. Plants raised from seeds treated with 30% PEG alleviated NaCl-induced oxidative stress by modulating the activity of antioxidative enzymes such as peroxidase, ascorbate peroxidase, glutathione peroxidase, glutathione S-transferase, ascorbic acid, superoxide dismutase, and catalase. Furthermore, PEG-30% significantly improved photosynthetic pigment biosynthesis, although there was a decrease in electrolyte leakage and lipid peroxidation in plants under saline conditions. Furthermore, 30% PEG improved the shoot length (41.46%), root length (46.57%), and biomass production (53.93%) of salt-stressed plants. This study revealed that 30% PEG is beneficial for reversing salt stress. However, extensive field studies are required to assess the potential of PEG for mitigating salt stress in various geographical regions.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s12298-025-01585-3.

摘要

未标注

盐度是阻碍各种形态和生理参数的最关键因素之一,最终会降低作物产量。除了不良的灌溉方式外,化学和物理风化会加剧土壤盐度。萝卜(L)是一种叶菜类和根菜类蔬菜,因其营养价值而在全球范围内种植。然而,盐度对其生产力构成严重威胁。聚乙二醇(PEG)主要用于诱导和研究植物中的渗透胁迫。然而,我们的新研究旨在观察PEG(10%、20%、30%和40%PEG)在遭受盐胁迫(200 mM NaCl)的[植物名称未给出]中的缓解胁迫潜力。盐毒性显著降低了[植物名称未给出]植物的种子发芽率(61.03%)、幼苗活力指数(54.25%)、总可溶性蛋白(69.23%)和生物量积累(42.25%)。同样,受胁迫的植物光合色素合成减少且营养状况不佳。然而,用30%PEG进行种子引发通过促进盐度条件下[植物名称未给出]的生长特性、矿物质吸收和抗氧化防御系统,显著缓解了盐胁迫。用30%PEG处理的种子培育出的植物通过调节过氧化物酶、抗坏血酸过氧化物酶、谷胱甘肽过氧化物酶、谷胱甘肽S-转移酶、抗坏血酸、超氧化物歧化酶和过氧化氢酶等抗氧化酶的活性,减轻了NaCl诱导的氧化胁迫。此外,30%PEG显著改善了光合色素的生物合成,尽管盐胁迫条件下植物的电解质渗漏和脂质过氧化有所减少。此外,30%PEG提高了盐胁迫植物的地上部长度(41.46%)、根长度(46.57%)和生物量产量(53.93%)。这项研究表明30%PEG有利于逆转盐胁迫。然而,需要进行广泛的田间研究来评估PEG在不同地理区域缓解盐胁迫的潜力。

补充信息

在线版本包含可在10.1007/s12298-025-01585-3获取的补充材料。

相似文献

1
Insight into polyethylene glycol-mediated physiochemical, nutritional, and antioxidative defense modulations in salt-stressed L.
Physiol Mol Biol Plants. 2025 Apr;31(4):659-674. doi: 10.1007/s12298-025-01585-3. Epub 2025 Apr 17.
2
Seed priming using different agents can alleviate salt stress in kenaf ( L.) by activating antioxidant system and related genes expression.
Physiol Mol Biol Plants. 2024 Oct;30(10):1741-1757. doi: 10.1007/s12298-024-01521-x. Epub 2024 Oct 22.
4
Salt-Tolerant Bacteria Support Salinity Stress Mitigating Impact of Arbuscular Mycorrhizal Fungi in Maize ( L.).
Microorganisms. 2025 Jun 10;13(6):1345. doi: 10.3390/microorganisms13061345.
5
Hydrogen peroxide and salt stress in radish: effects on growth, physiology, and root quality.
Physiol Mol Biol Plants. 2024 Jul;30(7):1175-1184. doi: 10.1007/s12298-024-01476-z. Epub 2024 Jul 1.
7
Evaluating the potential of in alleviation of aluminium stress in .
3 Biotech. 2025 Jan;15(1):34. doi: 10.1007/s13205-024-04192-3. Epub 2025 Jan 6.
9
Role of Gibberellic Acid and Indole 3-Bytyric Acid in Improving Salinity Tolerance in Two Horse Gram Cultivars.
Bull Environ Contam Toxicol. 2025 Jun 10;114(6):93. doi: 10.1007/s00128-025-04052-7.

本文引用的文献

1
Abiotic stress responses in plants.
Nat Rev Genet. 2022 Feb;23(2):104-119. doi: 10.1038/s41576-021-00413-0. Epub 2021 Sep 24.
2
How Plant Hormones Mediate Salt Stress Responses.
Trends Plant Sci. 2020 Nov;25(11):1117-1130. doi: 10.1016/j.tplants.2020.06.008. Epub 2020 Jul 13.
3
An Effective Screening Method and a Reliable Screening Trait for Salt Tolerance of at the Germination Stage.
Front Plant Sci. 2019 Apr 26;10:530. doi: 10.3389/fpls.2019.00530. eCollection 2019.
4
Plant Salinity Stress: Many Unanswered Questions Remain.
Front Plant Sci. 2019 Feb 15;10:80. doi: 10.3389/fpls.2019.00080. eCollection 2019.
6
Preparing plants for improved cold tolerance by priming.
Plant Cell Environ. 2019 Mar;42(3):782-800. doi: 10.1111/pce.13394. Epub 2018 Sep 25.
7
Molecular response of canola to salt stress: insights on tolerance mechanisms.
PeerJ. 2018 May 22;6:e4822. doi: 10.7717/peerj.4822. eCollection 2018.
10
Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage.
Saudi J Biol Sci. 2016 Jul;23(4):467-77. doi: 10.1016/j.sjbs.2015.05.013. Epub 2015 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验