Prusty Manas Ranjan, Shatil-Cohen Arava, Kumar Rakesh, Sharma Davinder, Minz-Dub Anna, Ezrati Smadar, Hihinashvili Avigail, Sharon Amir
The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel.
School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
Physiol Mol Biol Plants. 2025 Apr;31(4):545-554. doi: 10.1007/s12298-025-01591-5. Epub 2025 May 15.
Genetic engineering of wheat is complex due to its large genome size, the presence of numerous genes with high sequence similarities, and a multitude of repetitive elements. In addition, genetic transformation of wheat has been difficult, mainly due to poor regeneration in tissue cultures. Recent advances in plant biotechnology, particularly the use of the regenerative genes GROWTH-REGULATING FACTOR () and GRF-INTERACTING FACTOR (), have provided new tools for wheat transformation and regeneration. Another transformative tool is the RUBY system that involves genetic engineering of three betalain biosynthesis genes, providing a noninvasive, visually detectable red pigment. In this study, we used the chimera along with the RUBY system to advance transformation and gene editing in wheat and barley. The chimera significantly aided wheat regeneration; however, it had an opposite effect in barley, where it inhibited the regeneration process. Therefore, we generated RUBY transgenic barley lines using constructs that did not include the chimera. Additionally, we used the RUBY cassette for fast assessment of gene editing by knockingout the first betalain biosynthetic gene in RUBY- positive transgenic wheat plants, resulting in a change of leaf color from red to green. The edited RUBY wheat lines lost more than just the red color. They also lost betalain-related traits, such as being less likely to get leaf rust () and salt stress. Importantly, the loss of RUBY did not affect plant viability, making it a useful tool for genome editing and a viable alternative to destructive methods.
The online version contains supplementary material available at 10.1007/s12298-025-01591-5.
由于小麦基因组庞大、存在众多序列高度相似的基因以及大量重复元件,其基因工程操作复杂。此外,小麦的遗传转化一直很困难,主要原因是组织培养中的再生能力较差。植物生物技术的最新进展,特别是再生基因生长调节因子(GRF)和GRF相互作用因子(GIF)的应用,为小麦的转化和再生提供了新工具。另一种变革性工具是红宝石(RUBY)系统,该系统涉及对三个甜菜碱生物合成基因进行基因工程改造,可产生一种非侵入性、视觉上可检测的红色色素。在本研究中,我们使用GRF - GIF嵌合体以及RUBY系统来推进小麦和大麦的转化及基因编辑。GRF - GIF嵌合体显著促进了小麦的再生;然而,在大麦中却产生了相反的效果,它抑制了再生过程。因此,我们使用不包含GRF - GIF嵌合体的构建体生成了RUBY转基因大麦品系。此外,我们通过敲除RUBY阳性转基因小麦植株中的第一个甜菜碱生物合成基因,利用RUBY盒快速评估基因编辑,导致叶片颜色从红色变为绿色。经过编辑的RUBY小麦品系不仅失去了红色。它们还失去了与甜菜碱相关的性状,例如感染叶锈病(Puccinia triticina)和遭受盐胁迫的可能性降低。重要的是,RUBY的缺失并不影响植物的活力,使其成为基因组编辑的有用工具,并且是破坏性方法的可行替代方案。
在线版本包含可在10.1007/s12298 - 025 - 01591 - 5获取的补充材料。