Suppr超能文献

利用新型轻量级架构通过鼻腔呼吸声检测疾病:以新冠病毒病为例

Detection of disease on nasal breath sound by new lightweight architecture: Using COVID-19 as an example.

作者信息

She Jiayuan, Shi Lin, Li Peiqi, Dong Ziling, Li Renxing, Li Shengkai, Gu Liping, Tong Zhao, Yang Zhuochang, Ji Yajie, Feng Liang, Chen Jiangang

机构信息

Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai China'.

School of Artificial Intelligence and Advanced Computing, Xi'an Jiaotong-Liverpool University, Taicang, China.

出版信息

Digit Health. 2025 May 28;11:20552076251339284. doi: 10.1177/20552076251339284. eCollection 2025 Jan-Dec.

Abstract

BACKGROUND

Infectious diseases, particularly COVID-19, continue to be a significant global health issue. Although many countries have reduced or stopped large-scale testing measures, the detection of such diseases remains a propriety.

OBJECTIVE

This study aims to develop a novel, lightweight deep neural network for efficient, accurate, and cost-effective detection of COVID-19 using a nasal breathing audio data collected via smartphones.

METHODOLOGY

Nasal breathing audio from 128 patients diagnosed with the Omicron variant was collected. Mel-Frequency Cepstral Coefficients, a widely used feature in speech and sound analysis, were employed for extracting important characteristics from the audio signals. Additional feature selection was performed using random forest (RF) and principal component analysis (PCA) for dimensionality reduction. A Dense-ReLU-Dropout model was trained with K-fold cross-validation (K = 3), and performance metrics like accuracy, precision, recall, and F1-score were used to evaluate the model.

RESULTS

The proposed model achieved 97% accuracy in detecting COVID-19 from nasal breathing sounds, outperforming state-of-the-art methods such as those by Lella and Alphonse and Abayomi-Alli et al. Our Dense-ReLU-Dropout model, using RF and PCA for feature selection, achieves high accuracy with greater computational efficiency compared to existing methods that require more complex models or larger datasets.

CONCLUSION

The findings suggest that the proposed method holds significant potential for clinical implementation, advancing smartphone-based diagnostics in infectious diseases. The Dense-ReLU-Dropout model, combined with innovative feature processing techniques, offers a promising approach for efficient and accurate COVID-19 detection, showcasing the capabilities of mobile device-based diagnostics.

摘要

背景

传染病,尤其是新冠病毒病,仍然是一个重大的全球卫生问题。尽管许多国家已经减少或停止了大规模检测措施,但此类疾病的检测仍然很有必要。

目的

本研究旨在开发一种新型的轻量级深度神经网络,用于使用通过智能手机收集的鼻腔呼吸音频数据,高效、准确且经济高效地检测新冠病毒病。

方法

收集了128例被诊断为奥密克戎变异株患者的鼻腔呼吸音频。梅尔频率倒谱系数是语音和声音分析中广泛使用的特征,用于从音频信号中提取重要特征。使用随机森林(RF)和主成分分析(PCA)进行额外的特征选择以进行降维。使用K折交叉验证(K = 3)训练密集整流线性单元-随机失活(Dense-ReLU-Dropout)模型,并使用准确率、精确率、召回率和F1分数等性能指标来评估该模型。

结果

所提出的模型在从鼻腔呼吸声音中检测新冠病毒病方面达到了97%的准确率,优于Lella、Alphonse以及Abayomi-Alli等人的现有方法。我们的密集整流线性单元-随机失活模型,使用随机森林和主成分分析进行特征选择,与需要更复杂模型或更大数据集的现有方法相比,以更高的计算效率实现了高精度。

结论

研究结果表明,所提出的方法在临床应用方面具有巨大潜力,推动了基于智能手机的传染病诊断。密集整流线性单元-随机失活模型与创新的特征处理技术相结合,为高效准确地检测新冠病毒病提供了一种有前景的方法,展示了基于移动设备的诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/573e/12120289/00214c96ece9/10.1177_20552076251339284-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验