Cheng Yu-Kai, Chu Hsing-Hui, Yang Ning-Jun, Lai Yei-Chen
Department of Chemistry, National Chung Hsing University 145 Xingda Rd., South Dist, Taichung City 402202, Taiwan.
JACS Au. 2025 May 9;5(5):2172-2185. doi: 10.1021/jacsau.5c00146. eCollection 2025 May 26.
Self-aminoacylating ribozymes catalyze the attachment of amino acids to RNA, serving as pivotal models to investigate the catalytic roles of RNA in prebiotic evolution. In this study, we investigated how divalent metal ions (Mg and Ca) modulate local and global structures in two such ribozymes, S-1A.1-a and S-2.1-a, using 4-cyanotryptophan (4CNW) fluorescence and native gel electrophoresis. By tracking 4CNW fluorescence changes at varying concentrations of Mg and Ca and temperatures, we determined how these ions influence the catalytic sites and overall conformations of the ribozymes. Our findings reveal that Mg specifically binds to S-1A.1-a at low concentrations, stabilizing the local structure around the aminoacylation site and causing the site to become more buried, which is essential for catalytic activity. Although higher Mg and Ca concentrations induce global structural rearrangements, these shifts have minimal impact on the local environment of the aminoacylation site, underscoring the dominance of local structural stability in sustaining ribozyme function. In contrast, the activity of S-2.1-a effectively adapts to both Mg and Ca, and its fluorescence results indicate a more solvent-exposed aminoacylation site. Overall, these data highlight that local structural changes in the ribozyme's catalytic core are more critical for its function than global conformational shifts. Our study highlights the importance of local environmental changes in ion-dependent ribozyme catalysis and provides insights into the molecular mechanisms of self-aminoacylating ribozymes.
自我氨酰化核酶催化氨基酸与RNA的连接,是研究RNA在生命起源前进化中催化作用的关键模型。在本研究中,我们使用4-氰基色氨酸(4CNW)荧光和天然凝胶电泳,研究了二价金属离子(Mg和Ca)如何调节两种此类核酶S-1A.1-a和S-2.1-a的局部和整体结构。通过追踪在不同Mg和Ca浓度以及温度下4CNW荧光的变化,我们确定了这些离子如何影响核酶的催化位点和整体构象。我们的研究结果表明,低浓度的Mg特异性结合到S-1A.1-a上,稳定了氨酰化位点周围的局部结构,并使该位点变得更加隐蔽,这对催化活性至关重要。尽管较高的Mg和Ca浓度会诱导整体结构重排,但这些变化对氨酰化位点的局部环境影响最小,突出了局部结构稳定性在维持核酶功能中的主导地位。相比之下,S-2.1-a的活性能有效适应Mg和Ca,其荧光结果表明氨酰化位点更暴露于溶剂中。总体而言,这些数据突出表明,核酶催化核心的局部结构变化对其功能比整体构象变化更为关键。我们的研究强调了离子依赖性核酶催化中局部环境变化的重要性,并为自我氨酰化核酶的分子机制提供了见解。