Li Yanbin, Liu Yunzhi, Zhang Zewen, Zhou Weijiang, Xu Jinwei, Ye Yusheng, Peng Yucan, Xiao Xin, Chiu Wah, Sinclair Robert, Li Yuzhang, Cui Yi
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
Biophysics Program, School of Medicine, Stanford University, Stanford, California 94305, United States.
Nano Lett. 2024 Aug 28;24(34):10409-10417. doi: 10.1021/acs.nanolett.3c03000. Epub 2024 Aug 19.
The ability to freeze and stabilize reaction intermediates in their metastable states and obtain their structural and chemical information with high spatial resolution is critical to advance materials technologies such as catalysis and batteries. Here, we develop an electrified -freezing methodology to preserve these metastable states under electrochemical reaction conditions for cryogenic electron microscopy (cryo-EM) imaging and spectroscopy. Using Cu catalysts for CO reduction as a model system, we observe restructuring of the Cu catalyst in a CO atmosphere while the same catalyst remains intact in air at the nanometer scale. Furthermore, we discover the existence of a single valence Cu (1+) state and C-O bonding at the electrified liquid-solid interface of the -frozen samples, which are key reaction intermediates that traditional measurements fail to detect. This work highlights our novel technique to study the local structure and chemistry of electrified liquid-solid interfaces, with broad impact beyond catalysis.
将反应中间体冻结并稳定在其亚稳态,同时以高空间分辨率获取其结构和化学信息的能力,对于推动催化和电池等材料技术的发展至关重要。在此,我们开发了一种带电冷冻方法,用于在电化学反应条件下保存这些亚稳态,以便进行低温电子显微镜(cryo-EM)成像和光谱分析。以用于CO还原的Cu催化剂作为模型系统,我们观察到在CO气氛中Cu催化剂发生了重构,而相同的催化剂在空气中纳米尺度上保持完整。此外,我们发现在冷冻样品的带电液-固界面处存在单价Cu(1+)状态和C-O键,这些是传统测量无法检测到的关键反应中间体。这项工作突出了我们用于研究带电液-固界面局部结构和化学的新技术,其影响范围广泛,远超催化领域。