Wu Wei, Wang Zhao, Liu Longlong, Huang Junfeng, Qiu Haifan, Peng Lihong, Nie Libo
College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
Yantai Health Vocational College, Yantai 264670, China.
J Chem Inf Model. 2025 Jun 23;65(12):6341-6366. doi: 10.1021/acs.jcim.5c00726. Epub 2025 May 30.
Cell-to-cell communication (CCC) is prominent for cell growth and development as well as tissue and organ formation. CCC inference can help us to deeply understand cellular interplay and discover potential therapeutic targets for complex diseases. Cells communicate through direct contact or indirect dialogue using interacting ligand-receptor pairs (LRPs). Consequently, the CCC inference generally contains ligand-receptor interaction (LRI) data curation and LRI-mediated communication strength quantification. Here, we introduce a computational method, CellCDmT, to elucidate ular crosstalk. For interpreting LRI candidates, CellCDmT depicts each LRP as a vector using PyFeat, selects their informative features through XGBoost, and classifies each unlabeled LRP based on an ensemble model with atBoost and eep forest. For deciphering LRI-mediated cellular communication, CellCDmT filters interactions after merging known interactions and predictions, quantifies communication strength using a hree-point evaluation strategy with aximum difference, and visualizes crosstalk through the heatmap view, network view, circos view, and sigmoid plot. Using 8 evaluation metrics, CellCDmT was benchmarked with 7 LRI prediction baselines, 5 state-of-the-art LRI validation tools, and 8 CCC inference competitors. The outcomes demonstrated that CellCDmT accurately classified unlabeled LRPs and decoded cellular crosstalk. Moreover, CellCDmT visualized intercellular and intracellular communication networks in breast cancer. Interacting LRPs MIF-CD74, WNT7B-FZD1, and B2M-TFRC may be vital mediators of breast cancer. Ligands FGF22, B2M, and RSPO4 may be potential drug targets of breast cancer. CellCDmT will be conducive to facilitating our understanding about disease mechanisms and further promoting tumor targeted therapy and drug design. As a freely available tool, CellCDmT can be accessed at https://github.com/plhhnu/CellCDmT.
细胞间通讯(CCC)在细胞生长发育以及组织和器官形成过程中非常突出。CCC推理有助于我们深入理解细胞间的相互作用,并发现复杂疾病的潜在治疗靶点。细胞通过使用相互作用的配体-受体对(LRP)进行直接接触或间接对话来进行通讯。因此,CCC推理通常包括配体-受体相互作用(LRI)数据整理和LRI介导的通讯强度量化。在这里,我们介绍一种计算方法CellCDmT,以阐明细胞间的串扰。为了解释LRI候选物,CellCDmT使用PyFeat将每个LRP描绘为一个向量,通过XGBoost选择其信息特征,并基于带有atBoost和深度森林的集成模型对每个未标记的LRP进行分类。为了解码LRI介导的细胞通讯,CellCDmT在合并已知相互作用和预测后过滤相互作用,使用具有最大差异的三点评估策略量化通讯强度,并通过热图视图、网络视图、环形图视图和S形图可视化串扰。使用8个评估指标,CellCDmT与7个LRI预测基线、5个最新的LRI验证工具和8个CCC推理竞争对手进行了基准测试。结果表明,CellCDmT能够准确地对未标记的LRP进行分类并解码细胞间串扰。此外,CellCDmT可视化了乳腺癌中的细胞间和细胞内通讯网络。相互作用的LRP MIF-CD74、WNT7B-FZD1和B2M-TFRC可能是乳腺癌的重要介质。配体FGF22、B2M和RSPO4可能是乳腺癌的潜在药物靶点。CellCDmT将有助于促进我们对疾病机制的理解,并进一步推动肿瘤靶向治疗和药物设计。作为一个免费可用的工具,可以在https://github.com/plhhnu/CellCDmT上访问CellCDmT。