Suppr超能文献

用于增强分子性质预测的集成多模态分层融合与元学习

Integrated multimodal hierarchical fusion and meta-learning for enhanced molecular property prediction.

作者信息

Han Xianjun, Zhang Zhenglong, Bai Can, Wu Zijian

机构信息

School of Computer Science and Technology, Anhui University, Jiulong Road 111, Hefei 230601, China.

School of Acupuncture and Tuina, Anhui University of Chinese Medicine, Longzihu Road 350, Hefei 230012, China.

出版信息

Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf251.

Abstract

Accurately predicting the pharmacological and toxicological properties of molecules is a critical step in the drug development process. Owing to the heterogeneity of molecular property prediction tasks, most of the current methods rely on building a base model and fine-tuning it to address specific properties. However, constructing a high-quality base model is a time-consuming procedure and requires a carefully designed network architecture; in addition, in certain rare molecular property prediction tasks, the base model often does not transfer well to new tasks. In this work, we adopt a meta-learning-based training framework that enables our model to adapt to diverse tasks with limited data, thereby preventing data scarcity from impacting certain molecular property predictions. Additionally, this framework leverages the correlations between different tasks, allowing the constructed model to quickly adapt to new prediction tasks. Moreover, we propose a multimodal fusion framework that combines two-dimensional molecular graphs with molecular images. In the molecular graphs, node-, motif-, and graph-level features are hierarchically guided from low to high levels, fully exploiting the molecular representation and more efficiently conducting hierarchical fusion. Experimental results indicate that our model outperforms the baseline models across various performance indicators, thereby validating the effectiveness of our approach.

摘要

准确预测分子的药理学和毒理学特性是药物开发过程中的关键一步。由于分子特性预测任务的异质性,当前大多数方法都依赖于构建一个基础模型并对其进行微调以解决特定特性。然而,构建一个高质量的基础模型是一个耗时的过程,需要精心设计的网络架构;此外,在某些罕见的分子特性预测任务中,基础模型往往不能很好地迁移到新任务中。在这项工作中,我们采用了一种基于元学习的训练框架,使我们的模型能够在有限的数据下适应各种任务,从而防止数据稀缺影响某些分子特性预测。此外,该框架利用了不同任务之间的相关性,使构建的模型能够快速适应新的预测任务。此外,我们提出了一种多模态融合框架,将二维分子图与分子图像相结合。在分子图中,节点级、基序级和图级特征从低到高进行分层引导,充分利用分子表示并更有效地进行分层融合。实验结果表明,我们的模型在各种性能指标上均优于基线模型,从而验证了我们方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fe9/12123521/65b43037c80e/bbaf251f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验