Suppr超能文献

DPSP:一个用于预测多种药物副作用的多模态深度学习框架。

DPSP: a multimodal deep learning framework for polypharmacy side effects prediction.

作者信息

Masumshah Raziyeh, Eslahchi Changiz

机构信息

Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran 1983969411, Iran.

School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran 193955746, Iran.

出版信息

Bioinform Adv. 2023 Aug 16;3(1):vbad110. doi: 10.1093/bioadv/vbad110. eCollection 2023.

Abstract

MOTIVATION

Because unanticipated drug-drug interactions (DDIs) can result in severe bodily harm, identifying the adverse effects of polypharmacy is one of the most important tasks in human health. Over the past few decades, computational methods for predicting the adverse effects of polypharmacy have been developed.

RESULTS

This article presents DPSP, a framework for predicting polypharmacy side effects based on the construction of novel drug features and the application of a deep neural network to predict DDIs. In the first step, a variety of drug information is evaluated, and a feature extraction method and the Jaccard similarity are used to determine similarities between two drugs. By combining these similarities, a novel feature vector is generated for each drug. In the second step, the method predicts DDIs for specific DDI events using a multimodal framework and drug feature vectors. On three benchmark datasets, the performance of DPSP is measured by comparing its results to those of several well-known methods, such as GNN-DDI, MSTE, MDF-SA-DDI, NNPS, DDIMDL, DNN, DeepDDI, KNN, LR, and RF. DPSP outperforms these classification methods based on a variety of classification metrics. The results indicate that the use of diverse drug information is effective and efficient for identifying DDI adverse effects.

AVAILABILITY AND IMPLEMENTATION

The source code and datasets are available at https://github.com/raziyehmasumshah/DPSP.

摘要

动机

由于意外的药物相互作用(DDIs)可能导致严重的身体伤害,识别多药联用的不良反应是人类健康领域最重要的任务之一。在过去几十年中,已经开发出了预测多药联用不良反应的计算方法。

结果

本文介绍了DPSP,这是一个基于构建新的药物特征和应用深度神经网络来预测药物相互作用的多药联用副作用预测框架。第一步,评估各种药物信息,并使用特征提取方法和杰卡德相似度来确定两种药物之间的相似性。通过结合这些相似性,为每种药物生成一个新的特征向量。第二步,该方法使用多模态框架和药物特征向量预测特定药物相互作用事件的药物相互作用。在三个基准数据集上,通过将DPSP的结果与几种知名方法(如GNN-DDI、MSTE、MDF-SA-DDI、NNPS、DDIMDL、DNN、DeepDDI、KNN、LR和RF)的结果进行比较来衡量DPSP的性能。基于各种分类指标,DPSP优于这些分类方法。结果表明,使用多样的药物信息对于识别药物相互作用的不良反应是有效且高效的。

可用性和实现

源代码和数据集可在https://github.com/raziyehmasumshah/DPSP上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f0/10493180/167f227a90bb/vbad110f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验