Patel Kapil D, Lamarra Kya A, Sawadkar Prasad, Ludwig Ashleigh, Perriman Adam W
Research School of Chemistry (RSC), Australian National University, Caberra, Australian Capital Territory 2601, Australia.
John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, Australian Capital Territory 2601, Australia.
ACS Biomater Sci Eng. 2025 Jul 14;11(7):3893-3931. doi: 10.1021/acsbiomaterials.5c00286. Epub 2025 May 30.
Silk fibroin (SF) and gelatin methacryloyl (GelMA)-based hydrogels are emerging as promising biomaterials for various biomedical applications due to their unique physiological and physicochemical properties. This Review highlights the synergistic advantages of SF/GelMA hydrogels, focusing on their physicochemical tunability, biocompatibility, and multifunctionality. SF contributes to structural integrity and mechanical strength through the formation of crystalline β-sheet domains, while GelMA provides a photo-cross-linkable functionality, facilitating precise modulation of mechanical and structural properties beneficial for cell support. Various cross-linking strategies, including physical (ionic, hydrogen bonding, hydrophobic interaction, and crystalline formation) and chemical (covalent cross-linking, photo-cross-linking, and enzymatic), are explored to optimize SF/GelMA hydrogels for enhanced tissue adhesion and tissue (skin, muscle, cartilage, bone, tendon, and ligament) regeneration applications. Furthermore, we address the current key translational challenges such as long-term biostability, large-scale production, and immune-regulatory pathways for successful clinical implementation for applications in regenerative medicine, including tissue repair and tissue reconstruction.
基于丝素蛋白(SF)和甲基丙烯酰化明胶(GelMA)的水凝胶因其独特的生理和物理化学性质,正成为各种生物医学应用中很有前景的生物材料。本综述重点介绍了SF/GelMA水凝胶的协同优势,着重阐述其物理化学可调性、生物相容性和多功能性。SF通过形成结晶β-折叠结构域有助于结构完整性和机械强度,而GelMA提供可光交联功能,便于精确调节有利于细胞支持的机械和结构性质。探索了各种交联策略,包括物理交联(离子键、氢键、疏水相互作用和结晶形成)和化学交联(共价交联、光交联和酶促交联),以优化SF/GelMA水凝胶,增强其在组织黏附以及组织(皮肤、肌肉、软骨、骨、肌腱和韧带)再生应用中的性能。此外,我们还探讨了当前关键的转化挑战,如长期生物稳定性、大规模生产以及免疫调节途径,以实现其在再生医学(包括组织修复和组织重建)应用中的成功临床应用。