Suppr超能文献

根瘤菌和类菌体对α,α-海藻糖的积累。

Accumulation of alpha,alpha-trehalose by Rhizobium bacteria and bacteroids.

作者信息

Streeter J G

出版信息

J Bacteriol. 1985 Oct;164(1):78-84. doi: 10.1128/jb.164.1.78-84.1985.

Abstract

Four strains of Rhizobium japonicum (61A76 and USDA 110, 123, and 138) were grown in eight different defined media. Regardless of the carbon or nitrogen source supplied, alpha, alpha-trehalose was the major carbohydrate (among mono- and disaccharides) accumulated by all four strains. After 7 to 9 days of growth, trehalose generally accounted for 90 to 100% of the mono- and disaccharides detected. None of the four strains would grow with trehalose as a carbon source, but the utilization of endogenous trehalose was demonstrated under carbon starvation conditions in water culture or when the carbon supply in a defined medium was exhausted. Under these conditions, a small amount of trehalose was lost from cells to the medium. In a survey of most of the serogroups of R. japonicum and several strains of other Rhizobium species, all strains tested were found to accumulate some trehalose. Trehalose concentrations varied widely; the highest concentration recorded was 41 micrograms/mg of dry weight. In all but six strains trehalose accounted for greater than 80% of the mono- and disaccharides in cells. Fast-growing strains of R. japonicum also accumulated small amounts trehalose. R. japonicum bacteroids also synthesized trehalose; the quantity in nodules varied in approximate correspondence to accumulation of trehalose by cultured bacteria. In young soybean nodules (29 days after planting), 45 to 80% of the trehalose was recovered in the cytosol. There were differences among R. japonicum strains in the retention of trehalose, and the proportion of trehalose retained by bacteroids increased with increasing plant age for all strains.

摘要

四株日本根瘤菌(61A76以及美国农业部菌株110、123和138)在八种不同的限定培养基中培养。无论提供何种碳源或氮源,α,α-海藻糖都是这四株菌株积累的主要碳水化合物(在单糖和双糖中)。生长7至9天后,海藻糖通常占检测到的单糖和双糖的90%至100%。这四株菌株均不能以海藻糖作为碳源生长,但在水培中的碳饥饿条件下或限定培养基中的碳源耗尽时,可证明其对内生海藻糖的利用。在这些条件下,少量海藻糖从细胞中流失到培养基中。在对大多数日本根瘤菌血清群和其他几种根瘤菌属菌株的调查中,发现所有测试菌株都积累了一些海藻糖。海藻糖浓度差异很大;记录到的最高浓度为41微克/毫克干重。除六株菌株外,所有菌株中海藻糖占细胞中单糖和双糖的比例均超过80%。日本根瘤菌的快速生长菌株也积累少量海藻糖。日本根瘤菌类菌体也合成海藻糖;根瘤中的数量变化与培养细菌中海藻糖的积累大致对应。在年轻的大豆根瘤(种植后29天)中,45%至80%的海藻糖存在于细胞质中。不同日本根瘤菌菌株在海藻糖保留方面存在差异,并且所有菌株类所有菌株而言,类菌体保留的海藻糖比例随植株年龄的增加而增加。

相似文献

1
Accumulation of alpha,alpha-trehalose by Rhizobium bacteria and bacteroids.
J Bacteriol. 1985 Oct;164(1):78-84. doi: 10.1128/jb.164.1.78-84.1985.
3
Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation.
J Bacteriol. 1980 Sep;143(3):1384-94. doi: 10.1128/jb.143.3.1384-1394.1980.
4
Cytochromes of Rhizobium japonicum 61A76 Bacteroids from Soybean Nodules.
Plant Physiol. 1983 Jan;71(1):194-6. doi: 10.1104/pp.71.1.194.
5
Synthesis, accumulation and hydrolysis of trehalose during growth of peanut rhizobia in hyperosmotic media.
J Basic Microbiol. 2000;40(3):149-56. doi: 10.1002/1521-4028(200007)40:3<149::AID-JOBM149>3.0.CO;2-Y.
7
Effects of culture age on symbiotic infectivity of Rhizobium japonicum.
J Bacteriol. 1983 Jan;153(1):443-51. doi: 10.1128/jb.153.1.443-451.1983.
9
Autotrophic growth of H2-uptake-positive strains of Rhizobium japonicum in an atmosphere supplied with hydrogen gas.
Proc Natl Acad Sci U S A. 1979 Apr;76(4):1788-92. doi: 10.1073/pnas.76.4.1788.

引用本文的文献

4
Exo-Metabolites of -Nodulating Rhizobial Strains.
Metabolites. 2019 May 30;9(6):105. doi: 10.3390/metabo9060105.
5
Identifying term relations cross different gene ontology categories.
BMC Bioinformatics. 2017 Dec 28;18(Suppl 16):573. doi: 10.1186/s12859-017-1959-3.
6
Trehalose-Based Block Copolycations Promote Polyplex Stabilization for Lyophilization and in Vivo pDNA Delivery.
ACS Biomater Sci Eng. 2016 Jan 11;2(1):43-55. doi: 10.1021/acsbiomaterials.5b00312. Epub 2015 Dec 22.
8
Molecular basis of the establishment and functioning of a N2-fixing root nodule.
World J Microbiol Biotechnol. 1994 Nov;10(6):612-30. doi: 10.1007/BF00327946.
10
Physiological changes in rhizobia after growth in peat extract may be related to improved desiccation tolerance.
Appl Environ Microbiol. 2013 Jul;79(13):3998-4007. doi: 10.1128/AEM.00082-13. Epub 2013 Apr 19.

本文引用的文献

1
Preservation of membranes in anhydrobiotic organisms: the role of trehalose.
Science. 1984 Feb 17;223(4637):701-3. doi: 10.1126/science.223.4637.701.
4
Trehalose Toxicity in Cuscuta reflexa: CORRELATION WITH LOW TREHALASE ACTIVITY.
Plant Physiol. 1981 Dec;68(6):1369-74. doi: 10.1104/pp.68.6.1369.
6
Rhizobium japonicum Serogroup and Hydrogenase Phenotype Distribution in 12 States.
Appl Environ Microbiol. 1984 Apr;47(4):613-5. doi: 10.1128/aem.47.4.613-615.1984.
8
Diversity and Dynamics of Indigenous Rhizobium japonicum Populations.
Appl Environ Microbiol. 1980 Nov;40(5):931-8. doi: 10.1128/aem.40.5.931-938.1980.
9
13C nuclear magnetic resonance study of trehalose mobilization in yeast spores.
J Bacteriol. 1982 Jul;151(1):177-85. doi: 10.1128/jb.151.1.177-185.1982.
10
Effects of culture age on symbiotic infectivity of Rhizobium japonicum.
J Bacteriol. 1983 Jan;153(1):443-51. doi: 10.1128/jb.153.1.443-451.1983.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验