Ren Huiying, Wang Jixiao, Liu Jiani, Zhang Zijie, Wang Lingyun, Wei Fulan
Shandong University, Jinan, China.
Prog Orthod. 2025 May 30;26(1):19. doi: 10.1186/s40510-025-00566-2.
Mechanical stress triggers an increase in cellular reactive oxygen species (ROS), which is associated with the impairment of osteogenesis. During orthodontic treatment, bone marrow mesenchymal stem cells (BMSCs) experience mechanical stress, yet the oxidative profile and redox regulatory mechanisms under such stress, especially involving Nicotinamide adenine dinucleotide (NAD), are not well understood, necessitating further research into their roles in orthodontic therapies.
The Tension System was established to detect ROS changes in BMSCs under cyclic stretch stress, with HO simulating uncontrolled ROS. Flow cytometry and fluorescence staining measured ROS, while an NAD/NADH assay kit assessed NAD levels. qRT-PCR and Western blotting analyzed expression of NAD synthesis and consume enzymes. Osteogenic potential was evaluated by qRT-PCR, Western blotting, and Alkaline phosphatase (ALP) staining. Loss-of-function and supplementation assays explored role of NAD in oxidative stress and Nrf2 regulation, with localization assessed by immunofluorescence and Western blotting. In vivo osteogenic effects were confirmed using an orthodontic tooth movement (OTM) model, with osteogenesis assessed by immunohistochemistry and microCT for OTM measurements.
Cyclic stretch stress increased ROS in BMSCs over 24 h and boosted osteogenic differentiation. However, increased ROS from HO hindered this process. Notably, NAD levels rose with cyclic stretch, and experiments showed it supported osteogenesis by controlling ROS level in BMSCs. Furthermore, NAD regulated BMSC ROS via Nrf2 nuclear translocation. Rat models indicated that NMN supplementation enhanced osteogenic and osteoclastic markers and accelerated tooth movement, while FK866 inhibited this effect.
We identified that NAD/Nrf2 signaling regulated oxidative level and thus promoted osteogenic commitment of BMSCs under cyclic stretch stress. Targeting NAD metabolism or administrating exogenous supplementation to promote bone rebuilding could be a prospective therapy to accelerate OTM.
机械应力会引发细胞活性氧(ROS)增加,这与成骨作用受损有关。在正畸治疗过程中,骨髓间充质干细胞(BMSCs)会受到机械应力影响,然而,在这种应力下的氧化状态和氧化还原调节机制,尤其是涉及烟酰胺腺嘌呤二核苷酸(NAD)的机制,尚未得到充分了解,因此有必要进一步研究它们在正畸治疗中的作用。
建立张力系统以检测循环拉伸应力下BMSCs中的ROS变化,用HO模拟失控的ROS。流式细胞术和荧光染色测量ROS,而NAD/NADH检测试剂盒评估NAD水平。qRT-PCR和蛋白质免疫印迹分析NAD合成和消耗酶的表达。通过qRT-PCR、蛋白质免疫印迹和碱性磷酸酶(ALP)染色评估成骨潜力。功能丧失和补充试验探讨了NAD在氧化应激和Nrf2调节中的作用,通过免疫荧光和蛋白质免疫印迹评估其定位。使用正畸牙齿移动(OTM)模型在体内确认成骨作用,通过免疫组织化学和显微CT评估OTM测量的成骨情况。
循环拉伸应力在24小时内增加了BMSCs中的ROS,并促进了成骨分化。然而,HO产生的ROS增加阻碍了这一过程。值得注意的是,NAD水平随循环拉伸而升高,实验表明它通过控制BMSCs中的ROS水平来支持成骨作用。此外,NAD通过Nrf2核转位调节BMSC ROS。大鼠模型表明,补充NMN可增强成骨和破骨标志物并加速牙齿移动,而FK866抑制了这种作用。
我们发现NAD/Nrf2信号通路调节氧化水平,从而在循环拉伸应力下促进BMSCs的成骨分化。靶向NAD代谢或给予外源性补充以促进骨重建可能是加速OTM的一种前瞻性治疗方法。