Kumar Praveen, Ali Basharat, Kumar Mohit, Carolus Hans, Romero Celia Lobo, Vergauwen Rudy, Chauhan Anshu, Narayanan Aswathy, Banerjee Atanu, Gaur Naseem A, Singh Ashutosh, Van Dijck Patrick, Chakrabarti Arunaloke, Rudramurthy Shiva Prakash M, Sanyal Kaustuv, Prasad Rajendra
Amity Institute of Biotechnology, Amity University, Gurugram, Haryana, 122413, India.
School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
FEMS Yeast Res. 2025 Jan 30;25. doi: 10.1093/femsyr/foaf030.
The intrinsic resistance of Candidozyma auris (C. auris) to antifungal drugs poses a major therapeutic challenge, with conventional resistance mechanisms providing only partial explanations. Sphingolipids (SLs), known for their interclade heterogeneity, play a crucial role in antifungal resistance. This study examined the SL landscape in two drug-susceptible clade II isolates, C-line and P-line, from distinct geographical origins, which were experimentally evolved to develop stable fluconazole (FLC) resistance. The progenitors displayed distinct SL profiles, P1 had higher PhytoCer and αOHPhytoCer, indicating a more active acidic SL biosynthesis branch, whereas C1 exhibited elevated αOHGlcCer, αOHCer, and LCBs, reflecting a greater role of the neutral biosynthesis branch. The principal component analysis also confirmed distinct segregation of the two progenitors. Upon evolution, P1.1 and C1.1 adaptors showed significant SL alterations. P1.1 exhibited PhytoCer enrichment, while C1.1 showed reduced αOHGlcCer alongside increased PhytoCer, dhCer, and αOHPhytoCer levels. Notably, αOHGlcCer remained unchanged in P1.1, whereas LCBs and αOHPhytoCer decreased compared to P1. Despite these lineage-specific differences between the progenitors, both evolved replicates exhibited increased PhytoCer as a common denominator like what is also observed in clinical FLC-resistant isolates. These findings highlight intraclade SL variability and suggest that specific SLs contribute to FLC resistance in C. auris.
耳念珠菌(C. auris)对抗真菌药物的固有抗性构成了重大的治疗挑战,传统的抗性机制只能提供部分解释。鞘脂(SLs)以其在不同进化枝间的异质性而闻名,在抗真菌抗性中起着关键作用。本研究检测了来自不同地理来源的两个药物敏感的进化枝II分离株C系和P系的鞘脂情况,它们经实验进化后产生了稳定的氟康唑(FLC)抗性。亲代显示出不同的鞘脂谱,P1具有较高的植物神经酰胺和α-羟基植物神经酰胺,表明酸性鞘脂生物合成分支更活跃,而C1显示出α-羟基葡萄糖神经酰胺、α-羟基神经酰胺和长链碱基(LCBs)升高,反映了中性生物合成分支的更大作用。主成分分析也证实了两个亲代的明显分离。进化后,P1.1和C1.1适应株显示出显著的鞘脂变化。P1.1表现出植物神经酰胺富集,而C1.1显示α-羟基葡萄糖神经酰胺减少,同时植物神经酰胺、二氢神经酰胺和α-羟基植物神经酰胺水平增加。值得注意的是,α-羟基葡萄糖神经酰胺在P1.1中保持不变,而与P1相比,长链碱基和α-羟基植物神经酰胺减少。尽管亲代之间存在这些谱系特异性差异,但两个进化复制品都表现出植物神经酰胺增加,这是一个共同特征,临床耐氟康唑分离株中也观察到了这一点。这些发现突出了进化枝内鞘脂的变异性,并表明特定的鞘脂有助于耳念珠菌对氟康唑的抗性。