Suppr超能文献

持续改善:使用变分自编码器对细胞图像进行分解

Kaizen: Decomposing cellular images with VQ-VAE.

作者信息

Majoral Daniel, Domnich Marharyta

机构信息

Institute of Computer Science, University of Tartu, Tartu, Estonia.

出版信息

PLoS One. 2025 May 30;20(5):e0313549. doi: 10.1371/journal.pone.0313549. eCollection 2025.

Abstract

A fundamental problem in cell and tissue biology is finding cells in microscopy images. Traditionally, this detection has been performed by segmenting the pixel intensities. However, these methods struggle to delineate cells in more densely packed micrographs, where local decisions about boundaries are not trivial. Here, we develop a new methodology to decompose microscopy images into individual cells by making object-level decisions. We formulate the segmentation problem as training a flexible factorized representation of the image. To this end, we introduce Kaizen, an approach inspired by predictive coding in the brain that maintains an internal representation of an image while generating object hypotheses over the external image, and keeping the ones that improve the consistency of internal and external representations. We achieve this by training a Vector Quantised-Variational AutoEncoder (VQ-VAE). During inference, the VQ-VAE is iteratively applied on locations where the internal representation differs from the external image, making new guesses, and keeping only the ones that improve the overall image prediction until the internal representation matches the input. We demonstrate Kaizen's merits on two fluorescence microscopy datasets, improving the separation of nuclei and neuronal cells in cell culture images.

摘要

细胞与组织生物学中的一个基本问题是在显微镜图像中找到细胞。传统上,这种检测是通过分割像素强度来进行的。然而,这些方法在更密集的显微照片中难以勾勒出细胞,因为在这些照片中关于边界的局部决策并非易事。在这里,我们开发了一种新方法,通过进行对象级决策将显微镜图像分解为单个细胞。我们将分割问题表述为训练图像的灵活因式分解表示。为此,我们引入了Kaizen,这是一种受大脑预测编码启发的方法,它在生成外部图像的对象假设时维护图像的内部表示,并保留那些能提高内部和外部表示一致性的假设。我们通过训练向量量化变分自编码器(VQ-VAE)来实现这一点。在推理过程中,VQ-VAE在内部表示与外部图像不同的位置上迭代应用,做出新的猜测,只保留那些能改善整体图像预测的猜测,直到内部表示与输入匹配。我们在两个荧光显微镜数据集上展示了Kaizen的优点,改进了细胞培养图像中细胞核和神经元细胞的分离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e530/12124493/0b3179b17018/pone.0313549.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验