Du Yunxiang, Sun Maoshen, Li Zhengqing, Wu Xiangwei, Qu Qian, Ai Huasong, Liu Lei
New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
Department of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA.
Sci Adv. 2025 May 30;11(22):eadu1864. doi: 10.1126/sciadv.adu1864.
H3K9 methylation, a conserved heterochromatin marker, is crucial for chromosome segregation and gene regulation. Clr4 is the sole known methyltransferase catalyzing H3K9 methylation in . Clr4 K455/K472 automethylation and H3K14 ubiquitination (H3K14Ub) are vital activators of Clr4, ensuring appropriate heterochromatin deposition and preventing deleterious silencing. While automethylation's activation mechanism is uncovered, the mechanism of H3K14Ub's significantly stronger stimulation on Clr4 remains unclear. Here, we determined the crystal structures of Clr4 bound to ubiquitinated and unmodified H3 peptides at 2.60 and 2.39 angstrom, which revealed a synergistic mechanism underlying the pronounced stimulatory effect: H3K14Ub increases substrate affinity through multivalent interactions and facilitates the allosteric transition of Clr4 from an inactive apo conformation to a hyperactive "catalyzing state," including conformational changes in the αC-SET-insertion region, autoregulatory loop, and the β9/10 loop. We finally propose a multilevel structural model for the Clr4 catalytic-regulatory cycle. This work provides structural insights into the interplay between histone modifications and their collective impact on epigenetic regulation.
H3K9甲基化是一种保守的异染色质标记,对染色体分离和基因调控至关重要。Clr4是已知的唯一催化H3K9甲基化的甲基转移酶。Clr4 K455/K472自身甲基化和H3K14泛素化(H3K14Ub)是Clr4的重要激活因子,确保适当的异染色质沉积并防止有害的基因沉默。虽然自身甲基化的激活机制已被揭示,但H3K14Ub对Clr4的显著更强刺激机制仍不清楚。在这里,我们确定了与泛素化和未修饰的H3肽结合的Clr4的晶体结构,分辨率分别为2.60埃和2.39埃,这揭示了显著刺激作用背后的协同机制:H3K14Ub通过多价相互作用增加底物亲和力,并促进Clr4从无活性的脱辅基构象向高活性的“催化状态”的变构转变,包括αC-SET插入区域、自动调节环和β9/10环的构象变化。我们最终提出了Clr4催化调节循环的多层次结构模型。这项工作为组蛋白修饰之间的相互作用及其对表观遗传调控的集体影响提供了结构见解。