Kuzovnikov Mikhail A, Wang Busheng, Wang Xiaoyu, Marqueño Tomas, Shuttleworth Hannah A, Strain Calum, Gregoryanz Eugene, Zurek Eva, Peña-Alvarez Miriam, Howie Ross T
Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.
State University of New York at Buffalo, Department of Chemistry, Buffalo, 14260-3000, New York, USA.
Phys Rev Lett. 2025 May 16;134(19):196102. doi: 10.1103/PhysRevLett.134.196102.
Through laser-heated diamond anvil cell experiments, we synthesize a series of rubidium superhydrides and explore their properties with synchrotron x-ray powder diffraction and Raman spectroscopy measurements, combined with density functional theory calculations. Upon heating rubidium monohydride embedded in H_{2} at a pressure of 18 GPa, we form RbH_{9}-I, which is stable upon decompression down to 8.7 GPa, the lowest stability pressure of any known superhydride. At 22 GPa, another polymorph, RbH_{9}-II is synthesised at high temperature. Unique to the Rb-H system among binary metal hydrides is that further compression does not promote the formation of polyhydrides with higher hydrogen content. Instead, heating above 87 GPa yields RbH_{5}, which exhibits two polymorphs (RbH_{5}-I and RbH_{5}-II). All of the crystal structures comprise a complex network of quasimolecular H_{2} units and H^{-} anions, with RbH_{5} providing the first experimental evidence of linear H_{3}^{-} anions.
通过激光加热金刚石对顶砧实验,我们合成了一系列铷的超氢化物,并结合密度泛函理论计算,利用同步加速器X射线粉末衍射和拉曼光谱测量对其性质进行了探究。在18吉帕压力下加热嵌入氢气中的氢化铷,我们形成了RbH₉-I,它在减压至8.7吉帕时仍保持稳定,这是所有已知超氢化物中最低的稳定压力。在22吉帕时,另一种多晶型物RbH₉-II在高温下合成。在二元金属氢化物中,铷 - 氢体系独有的特点是进一步压缩并不会促进形成氢含量更高的多氢化物。相反,在87吉帕以上加热会生成RbH₅,它呈现出两种多晶型物(RbH₅-I和RbH₅-II)。所有晶体结构都包含一个由准分子H₂单元和H⁻阴离子组成的复杂网络,RbH₅提供了线性H₃⁻阴离子的首个实验证据。