Suppr超能文献

使用空间模型检查的用于脑组织分割的符号和混合人工智能。

Symbolic and hybrid AI for brain tissue segmentation using spatial model checking.

作者信息

Belmonte Gina, Ciancia Vincenzo, Massink Mieke

机构信息

S. C. Fisica Sanitaria Nord, Azienda Toscana Nord Ovest, Lucca, Italy.

Istituto di Scienza e Tecnologie dell'Informazione 'A. Faedo', Consiglio Nazionale delle Ricerche, Pisa, Italy.

出版信息

Artif Intell Med. 2025 Sep;167:103154. doi: 10.1016/j.artmed.2025.103154. Epub 2025 May 24.

Abstract

Segmentation of 3D medical images, and brain segmentation in particular, is an important topic in neuroimaging and in radiotherapy. Overcoming the current, time consuming, practise of manual delineation of brain tumours and providing an accurate, explainable, and replicable method of segmentation of the tumour area and related tissues is therefore an open research challenge. In this paper, we first propose a novel symbolic approach to brain segmentation and delineation of brain lesions based on spatial model checking. This method has its foundations in the theory of closure spaces, a generalisation of topological spaces, and spatial logics. At its core is a high-level declarative logic language for image analysis, ImgQL, and an efficient spatial model checker, VoxLogicA, exploiting state-of-the-art image analysis libraries in its model checking algorithm. We then illustrate how this technique can be combined with Machine Learning techniques leading to a hybrid AI approach that provides accurate and explainable segmentation results. We show the results of the application of the symbolic approach on several public datasets with 3D magnetic resonance (MR) images. Three datasets are provided by the 2017, 2019 and 2020 international MICCAI BraTS Challenges with 210, 259 and 293 MR images, respectively, and the fourth is the BrainWeb dataset with 20 (synthetic) 3D patient images of the normal brain. We then apply the hybrid AI method to the BraTS 2020 training set. Our segmentation results are shown to be in line with the state-of-the-art with respect to other recent approaches, both from the accuracy point of view as well as from the view of computational efficiency, but with the advantage of them being explainable.

摘要

3D医学图像分割,尤其是脑部分割,是神经成像和放射治疗中的一个重要课题。因此,克服当前手动描绘脑肿瘤耗时的做法,并提供一种准确、可解释且可重复的肿瘤区域及相关组织分割方法,是一个开放的研究挑战。在本文中,我们首先提出一种基于空间模型检查的脑分割和脑病变描绘的新颖符号方法。该方法基于闭包空间理论、拓扑空间的推广以及空间逻辑。其核心是一种用于图像分析的高级声明式逻辑语言ImgQL,以及一个高效的空间模型检查器VoxLogicA,它在模型检查算法中利用了最先进的图像分析库。然后,我们说明了如何将该技术与机器学习技术相结合,从而形成一种混合人工智能方法,该方法能提供准确且可解释的分割结果。我们展示了符号方法在几个包含3D磁共振(MR)图像的公共数据集上的应用结果。三个数据集分别由2017年、2019年和2020年国际MICCAI BraTS挑战赛提供,分别有210、259和293张MR图像,第四个是BrainWeb数据集,包含20张(合成的)正常脑的3D患者图像。然后我们将混合人工智能方法应用于BraTS 2020训练集。从准确性和计算效率的角度来看,我们的分割结果与其他近期方法的最新水平一致,而且具有可解释的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验