Suppr超能文献

使用迁移学习对正颌外科手术前后的面部微笑吸引力进行自动三维评估:一项初步研究。

Automated 3D facial smile attractiveness assessment before and after orthognathic surgery using transfer learning: A preliminary study.

作者信息

Chiang Wen-Chung, Chen Hui-Ling, Lin Hsiu-Hsia

机构信息

Department of Intelligent Technology and Application, Hungkuang University, Taichung, Taiwan.

Department of Stomatology, Taichung Veterans General Hospital, Taichung, Taiwan; School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.

出版信息

J Plast Reconstr Aesthet Surg. 2025 Jul;106:193-202. doi: 10.1016/j.bjps.2025.05.010. Epub 2025 May 14.

Abstract

The aesthetic appearance of the mouth during smiling significantly influences facial attractiveness, thereby, making smile analysis crucial in orthodontics, craniofacial surgery, and cosmetic dentistry. Accurate and quantitative evaluation of facial smile attractiveness is crucial for surgical planning and outcome assessment in orthognathic surgery (OGS). In this study, a transfer learning (TL) model using a convolutional neural network (CNN) based on three-dimensional (3D) contour line features was employed to assess facial smile attractiveness before and after OGS. A retrospective cohort study involving 135 patients was conducted between 2021 and 2024 to compare facial smile attractiveness before and after OGS. Using the 3dMD™ face system, 3D facial photos were captured in a natural head position with forward-facing eyes, relaxed facial muscles, and habitual dental occlusion, before and at least 6 months after surgery. Subsequently, 3D contour images were extracted from these photos for web-based automatic facial smile attractiveness assessment using TL with CNN model. Postoperatively, facial smile attractiveness significantly improved, with scores increasing from 2.62 to 3.27, representing a 25% enhancement as determined by the constructed machine learning model. The web-based system offered clinicians a user-friendly interface, providing rapid assessment of results and serving as an effective tool for doctor-patient communication. This study marks the first attempt to automatically evaluate facial smile attractiveness before and after surgery in an objective and quantitative manner, using a machine learning model based on the 3D contours feature map.

摘要

微笑时嘴巴的美学外观对面部吸引力有显著影响,因此,微笑分析在正畸学、颅面外科和美容牙科中至关重要。对面部微笑吸引力进行准确和定量评估对于正颌外科手术(OGS)的手术规划和结果评估至关重要。在本研究中,采用了一种基于三维(3D)轮廓线特征的卷积神经网络(CNN)迁移学习(TL)模型来评估正颌外科手术前后的面部微笑吸引力。在2021年至2024年期间进行了一项涉及135名患者的回顾性队列研究,以比较正颌外科手术前后的面部微笑吸引力。使用3dMD™面部系统,在自然头位下,眼睛向前、面部肌肉放松且处于习惯性牙合状态时,于手术前和术后至少6个月拍摄3D面部照片。随后,从这些照片中提取3D轮廓图像,使用带有CNN模型的TL进行基于网络的自动面部微笑吸引力评估。术后,面部微笑吸引力显著提高,得分从2.62提高到3.27,根据构建的机器学习模型确定提高了25%。基于网络的系统为临床医生提供了一个用户友好的界面,能够快速评估结果,并作为医患沟通的有效工具。本研究首次尝试使用基于3D轮廓特征图的机器学习模型,以客观和定量的方式自动评估手术前后的面部微笑吸引力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验