Suppr超能文献

原位生成的Cu(III)与晶体-非晶态强界面相互作用协同作用以实现对左乙拉西坦的自催化降解。

In situ generation of Cu(III) synergized with crystalline amorphous strong interfacial interaction for autocatalytic degradation of LEV.

作者信息

Zhang Chun, Chen Qin, Li Yuxuan, Cai Zhiyong, Wang Zhiguo, Huang Wei, Yu Peng

机构信息

School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, PR China.

School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, PR China; School of Materials Science and Engineering, Central South University, Changsha 410083, PR China.

出版信息

Water Res. 2025 Sep 15;284:123873. doi: 10.1016/j.watres.2025.123873. Epub 2025 May 29.

Abstract

The practical potential of metal catalysts in the advanced oxidation degradation of antibiotics has been seriously limited due to the secondary pollution caused by their application. To tackle this challenge, this study proposes an innovative approach that utilizes attapulgite/biochar composites for adsorbing heavy metals in wastewater and forming biscuit-type composites with crystalline/amorphous structures to effectively degrade antibiotics. The results show that a bimetallic amorphous layer forms on the surface of materials after Cu and Cd adsorption. This distinctive bimetallic amorphous/crystalline structure can generate highly active intermediates (e.g., Cu(III)) through an electron transfer mechanism, which is essential for the subsequent removal of levofloxacin (LEV). By investigating the formation mechanism of the amorphous/crystalline structure, it is revealed that this structure exhibits superior catalytic performance compared to the crystal structure. Moreover, this research offers an in-depth analysis of the interactions among multiple contaminants, elucidating the pivotal roles played by Cu(III) and Cd in this process. This discovery offers a novel perspective on the practical treatment of wastewater, enhancing not only the efficiency of the process but also the reduction of potential secondary contamination. It also provides a promising avenue for the advancement of environmentally conscious wastewater treatment technology.

摘要

由于金属催化剂在抗生素高级氧化降解中的实际应用会造成二次污染,其实际潜力受到严重限制。为应对这一挑战,本研究提出了一种创新方法,即利用凹凸棒石/生物炭复合材料吸附废水中的重金属,并形成具有晶体/非晶结构的饼干型复合材料以有效降解抗生素。结果表明,在铜和镉吸附后,材料表面形成了双金属非晶层。这种独特的双金属非晶/晶体结构可以通过电子转移机制产生高活性中间体(如Cu(III)),这对于随后去除左氧氟沙星(LEV)至关重要。通过研究非晶/晶体结构的形成机制,发现该结构与晶体结构相比具有优异的催化性能。此外,本研究对多种污染物之间的相互作用进行了深入分析,阐明了Cu(III)和Cd在此过程中所起的关键作用。这一发现为废水的实际处理提供了新的视角,不仅提高了处理效率,还减少了潜在的二次污染。它还为环境友好型废水处理技术的发展提供了一条有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验