Suppr超能文献

深度学习利用未分割的三维光学相干断层扫描(OCT)容积数据区分视乳头水肿、非动脉炎性前部缺血性视神经病变和健康眼睛。

Deep Learning Differentiates Papilledema, NAION, and Healthy Eyes With Unsegmented 3D OCT Volumes.

作者信息

Szanto David, Wang Jui-Kai, Woods Brian, Garvin Mona K, Johnson Brett A, Kardon Randy H, Linton Edward F, Kupersmith Mark J

机构信息

From the Department of Ophthalmology (D.S., M.J.K.), Icahn School of Medicine at Mount Sinai, New York, Texas, USA.

Department of Ophthalmology (J-K.W.), University of Texas Southwestern Medical Center, Dallas, Texas, USA.

出版信息

Am J Ophthalmol. 2025 Sep;277:249-259. doi: 10.1016/j.ajo.2025.05.036. Epub 2025 May 28.

Abstract

OBJECTIVE

Deep learning (DL) has been used to differentiate papilledema from healthy eyes and optic disc elevation on fundus photos. As we described optic nerve head (ONH) and peripapillary retina (PPR) optical coherence tomography (OCT) features that distinguish non-arteritic anterior ischemic optic neuropathy (NAION) from papilledema, we hypothesized that a DL approach using the full 3D OCT volume could reliably differentiate NAION, papilledema and healthy eyes.

DESIGN

This retrospective review analyzed OCT scans from eyes with acute NAION, papilledema, and healthy eyes from randomized and nonrandomized clinical trials.

PARTICIPANTS

We investigated a total of 4619 raw spectral domain ONH volume scans from 1539 eyes, including 1138 from eyes with idiopathic intracranial hypertension (IIH, Frisén grade ≥ 1), 648 from eyes with acute NAION, and 2833 scans from healthy eyes. We performed external validation on an additional 1663 scans from 742 eyes across these groups.

METHODS

We fine-tuned 3 ResNet 3D-18 models: one with the entire OCT volume, one with the PPR, and one with the optic nerve head excluding the PPR. We then evaluated the models on an external validation set.

MAIN OUTCOME MEASURES

The primary outcome measures were accuracy, area under the Receiver Operating Characteristic curve (AUC-ROC), and weighted precision, recall, and F1 scores.

RESULTS

Our model classified the 3 conditions using the entire scan with an internal validation accuracy of 94.9%, macro-average AUC-ROC of 0.986 with weighted F1 scores ranging from 0.93 to 0.95. In external validation, the entire scan model had an accuracy of 90.1% with a macro-average AUC-ROC of 0.977 and weighted F1-score range of 0.89 to 0.94. The PPR alone model attained an accuracy of 94.2%, with a macro-average AUC-ROC of 0.966 and weighted F1-score range of 0.81 to 0.88. The ONH alone model reached an accuracy of 85.0% with an AUC-ROC of 0.965 and weighted F1-score range of 0.84 to 0.89.

CONCLUSION

Our findings demonstrate that the model using the whole ONH OCT scan is a robust diagnostic tool for differentiating causes of swollen ONH. Changes in the PPR due to ONH swelling as well as ONH alone can also differentiate the disorders. The results reinforce the potential of automated approaches in assisting in the diagnosis of acquired optic disc swelling.

摘要

目的

深度学习(DL)已被用于在眼底照片上区分视乳头水肿与健康眼睛以及视盘隆起。正如我们所描述的区分非动脉性前部缺血性视神经病变(NAION)与视乳头水肿的视神经乳头(ONH)和视乳头周围视网膜(PPR)光学相干断层扫描(OCT)特征,我们推测使用完整的3D OCT容积的DL方法能够可靠地区分NAION、视乳头水肿和健康眼睛。

设计

这项回顾性研究分析了来自急性NAION、视乳头水肿患者以及来自随机和非随机临床试验的健康眼睛的OCT扫描。

参与者

我们共调查了来自1539只眼睛的4619份原始光谱域ONH容积扫描,其中包括来自特发性颅内高压(IIH,弗里斯恩分级≥1)患者眼睛的1138份扫描、来自急性NAION患者眼睛的648份扫描以及来自健康眼睛的2833份扫描。我们对这些组中另外742只眼睛的1663份扫描进行了外部验证。

方法

我们对3个ResNet 3D - 18模型进行了微调:一个使用整个OCT容积,一个使用PPR,一个使用不包括PPR的视神经乳头。然后我们在外部验证集上评估这些模型。

主要观察指标

主要观察指标为准确率、受试者操作特征曲线下面积(AUC - ROC)以及加权精度、召回率和F1分数。

结果

我们的模型使用整个扫描对这3种情况进行分类,内部验证准确率为94.9%,宏观平均AUC - ROC为0.986,加权F1分数范围为0.93至0.95。在外部验证中,整个扫描模型的准确率为90.1%,宏观平均AUC - ROC为0.977,加权F1分数范围为0.89至0.94。仅使用PPR的模型准确率为94.2%,宏观平均AUC - ROC为0.966,加权F1分数范围为0.81至0.88。仅使用ONH的模型准确率达到85.0%,AUC - ROC为0.965,加权F1分数范围为0.84至0.89。

结论

我们的研究结果表明,使用整个ONH OCT扫描的模型是区分ONH肿胀原因的强大诊断工具。由于ONH肿胀导致的PPR变化以及单独的ONH变化也可以区分这些疾病。结果强化了自动化方法在辅助诊断后天性视盘肿胀方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验