Suppr超能文献

免疫特征评分(IPS)的开发与验证,这是一种新型的多组学算法检测方法,用于对接受免疫检查点抑制剂治疗的晚期实体癌真实世界队列患者的预后进行分层。

Development and validation of the Immune Profile Score (IPS), a novel multiomic algorithmic assay for stratifying outcomes in a real-world cohort of patients with advanced solid cancer treated with immune checkpoint inhibitors.

作者信息

Zander Alia D, Erbe Rossin, Liu Yan, Jin Ailin, Hyun Seung Won, Mukhopadhyay Sayantoni, Terdich Ben, Rosasco Mario G, Patel Nirali, Mahon Brett M, Sasser A Kate, Ting-Lin Michelle A, Nimeiri Halla, Guinney Justin, Adkins Douglas, Zibelman Matthew, Beauchamp Kyle A, Sangli Chithra, Stein Michelle M, Taxter Timothy, Chan Timothy, Patel Sandip P, Cohen Ezra E W

机构信息

Tempus AI Inc, Chicago, Illinois, USA.

Washington Univ, St. Louis, Missouri, USA.

出版信息

J Immunother Cancer. 2025 May 30;13(5):e011363. doi: 10.1136/jitc-2024-011363.

Abstract

BACKGROUND

Immune checkpoint inhibitors (ICIs) have transformed the oncology treatment landscape. Despite substantial improvements for some patients, the majority do not benefit from ICIs, indicating a need for predictive biomarkers to better inform treatment decisions.

METHODS

A de-identified pan-cancer cohort from the Tempus multimodal real-world database was used for the development and validation of the Immune Profile Score (IPS) algorithm leveraging Tempus xT (648 gene DNA panel) and xR (RNA sequencing) (N=1,707 development cohort; N=1,600 validation cohort). The cohort consisted of patients with advanced stage cancer with solid tumor carcinomas across 16 cancer types treated with any ICI-containing regimen as the first or second line of therapy. The IPS model was developed using a machine learning framework that includes tumor mutational burden (TMB) and 11 RNA-based biomarkers as features.

RESULTS

IPS-High patients demonstrated significantly longer overall survival (OS) compared with IPS-Low patients (HR=0.45, 90% CI (0.40 to 0.52)). IPS was consistently prognostic in programmed death-ligand 1 (PD-L1) (positive/negative), TMB (High/Low), microsatellite status (microsatellite instability (MSI)-High), and regimen (ICI only/ICI+other) subgroups. Additionally, IPS remained significant in multivariable models controlling for TMB, MSI, and PD-L1, with IPS HRs of 0.49 (90% CI 0.42 to 0.56), 0.47 (90% CI 0.41 to 0.53), and 0.45 (90% CI 0.38 to 0.53), respectively. In an exploratory predictive utility analysis of the subset of patients (n=345) receiving first-line chemotherapy (CT) and second-line ICI, there was no significant effect of IPS for time to next treatment on CT in L1 (HR=1.06 (90% CI 0.88 to 1.29)). However, there was a significant effect of IPS for OS on ICI in L2 (HR=0.63 (90% CI 0.49 to 0.82)). A test of interaction was statistically significant (p<0.01).

CONCLUSIONS

Our results demonstrate that IPS is a generalizable multiomic biomarker that can be widely used clinically as a prognosticator of ICI-based regimens.

摘要

背景

免疫检查点抑制剂(ICI)改变了肿瘤治疗格局。尽管部分患者有显著改善,但大多数患者无法从ICI治疗中获益,这表明需要预测性生物标志物以更好地指导治疗决策。

方法

利用来自Tempus多模式真实世界数据库的去识别泛癌队列,开发并验证免疫谱评分(IPS)算法,该算法利用了Tempus xT(648基因DNA检测板)和xR(RNA测序)(开发队列N = 1707;验证队列N = 1600)。该队列由患有晚期实体肿瘤癌的患者组成,涉及16种癌症类型,接受任何含ICI的方案作为一线或二线治疗。IPS模型使用机器学习框架开发,该框架包括肿瘤突变负荷(TMB)和11种基于RNA的生物标志物作为特征。

结果

与IPS低的患者相比,IPS高的患者总生存期(OS)显著更长(HR = 0.45,90%CI(0.40至0.52))。IPS在程序性死亡配体1(PD-L1)(阳性/阴性)、TMB(高/低)、微卫星状态(微卫星不稳定性(MSI)-高)和治疗方案(仅ICI/ICI+其他)亚组中始终具有预后意义。此外,在控制TMB、MSI和PD-L1的多变量模型中,IPS仍然具有显著意义,IPS的HR分别为0.49(90%CI 0.42至0.56)、0.47(90%CI 0.41至0.53)和0.45(90%CI 0.38至0.53)。在对接受一线化疗(CT)和二线ICI的患者子集(n = 345)进行的探索性预测效用分析中,IPS对L1中CT的下次治疗时间没有显著影响(HR = 1.06(90%CI 0.88至1.29))。然而,IPS对L2中ICI的OS有显著影响(HR = 0.63(90%CI 0.49至0.82))。交互作用检验具有统计学意义(p<0.01)。

结论

我们的结果表明,IPS是一种可推广的多组学生物标志物,可在临床上广泛用作基于ICI方案的预后指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b7b/12128404/0e7a5eea2ca5/jitc-13-5-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验