Rakaee Mehrdad, Tafavvoghi Masoud, Ricciuti Biagio, Alessi Joao V, Cortellini Alessio, Citarella Fabrizio, Nibid Lorenzo, Perrone Giuseppe, Adib Elio, Fulgenzi Claudia A M, Hidalgo Filho Cassio Murilo, Di Federico Alessandro, Jabar Falah, Hashemi Sayed, Houda Ilias, Richardsen Elin, Rasmussen Busund Lill-Tove, Donnem Tom, Bahce Idris, Pinato David J, Helland Åslaug, Sholl Lynette M, Awad Mark M, Kwiatkowski David J
Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.
JAMA Oncol. 2025 Feb 1;11(2):109-118. doi: 10.1001/jamaoncol.2024.5356.
Only a small fraction of patients with advanced non-small cell lung cancer (NSCLC) respond to immune checkpoint inhibitor (ICI) treatment. For optimal personalized NSCLC care, it is imperative to identify patients who are most likely to benefit from immunotherapy.
To develop a supervised deep learning-based ICI response prediction method; evaluate its performance alongside other known predictive biomarkers; and assess its association with clinical outcomes in patients with advanced NSCLC.
DESIGN, SETTING, AND PARTICIPANTS: This multicenter cohort study developed and independently validated a deep learning-based response stratification model for predicting ICI treatment outcome in patients with advanced NSCLC from whole slide hematoxylin and eosin-stained images. Images for model development and validation were obtained from 1 participating center in the US and 3 in the European Union (EU) from August 2014 to December 2022. Data analyses were performed from September 2022 to May 2024.
Monotherapy with ICIs.
Model performance measured by clinical end points and objective response rate (ORR) differentiation power vs other predictive biomarkers, ie, programmed death-ligand 1 (PD-L1), tumor mutational burden (TMB), and tumor-infiltrating lymphocytes (TILs).
A total of 295 581 image tiles from 958 patients (mean [SD] age, 66.0 [10.6] years; 456 [48%] females and 502 [52%] males) treated with ICI for NSCLC were included in the analysis. The US-based development cohort consisted of 614 patients with median (IQR) follow-up time of 54.5 (38.2-68.1) months, and the EU-based validation cohort, 344 patients with 43.3 (27.4-53.9) months of follow-up. The ORR to ICI was 26% in the developmental cohort and 28% in the validation cohort. The deep learning model's area under the receiver operating characteristic curve (AUC) for ORR was 0.75 (95% CI, 0.64-0.85) in the internal test set and 0.66 (95% CI, 0.60-0.72) in the validation cohort. In a multivariable analysis, the deep learning model's score was an independent predictor of ICI response in the validation cohort for both progression-free (hazard ratio, 0.56; 95% CI, 0.42-0.76; P < .001) and overall survival (hazard ratio, 0.53; 95% CI, 0.39-0.73; P < .001). The tuned deep learning model achieved a higher AUC than TMB, TILs, and PD-L1 in the internal set; in the validation cohort, it was superior to TILs and comparable with PD-L1 (AUC, 0.67; 95% CI, 0.60-0.74), with a 10-percentage point improvement in specificity. In the validation cohort, combining the deep learning model with PD-L1 scores achieved an AUC of 0.70 (95% CI, 0.63-0.76), outperforming either marker alone, with a response rate of 51% compared to 41% for PD-L1 (≥50%) alone.
The findings of this cohort study demonstrate a strong and independent deep learning-based feature associated with ICI response in patients with NSCLC across various cohorts. Clinical use of this deep learning model could refine treatment precision and better identify patients who are likely to benefit from ICI for treatment of advanced NSCLC.
只有一小部分晚期非小细胞肺癌(NSCLC)患者对免疫检查点抑制剂(ICI)治疗有反应。为了实现最佳的个性化NSCLC护理,识别最有可能从免疫治疗中获益的患者至关重要。
开发一种基于监督深度学习的ICI反应预测方法;评估其与其他已知预测生物标志物相比的性能;并评估其与晚期NSCLC患者临床结局的关联。
设计、设置和参与者:这项多中心队列研究开发并独立验证了一种基于深度学习的反应分层模型,用于根据苏木精和伊红全切片染色图像预测晚期NSCLC患者的ICI治疗结果。模型开发和验证的图像于2014年8月至2022年12月从美国的1个参与中心和欧盟(EU)的3个中心获取。数据分析于2022年9月至2024年5月进行。
ICI单药治疗。
通过临床终点和客观缓解率(ORR)区分能力与其他预测生物标志物(即程序性死亡配体1(PD-L1)、肿瘤突变负荷(TMB)和肿瘤浸润淋巴细胞(TILs))来衡量模型性能。
分析纳入了958例接受ICI治疗NSCLC患者的295581个图像块(平均[标准差]年龄,66.0[10.6]岁;456例[48%]女性和502例[52%]男性)。基于美国的开发队列包括614例患者,中位(IQR)随访时间为54.5(38.2 - 68.1)个月,基于欧盟的验证队列包括344例患者,随访时间为43.3(27.4 - 53.9)个月。ICI的ORR在开发队列中为26%,在验证队列中为28%。深度学习模型在内部测试集中ORR的受试者操作特征曲线下面积(AUC)为0.75(95%CI,0.64 - 0.85),在验证队列中为0.66(95%CI,0.60 - 0.72)。在多变量分析中,深度学习模型的评分是验证队列中ICI反应的独立预测指标,对于无进展生存期(风险比,0.56;95%CI,0.42 - 0.76;P < .001)和总生存期(风险比,0.53;95%CI,0.39 - 0.73;P < .001)均如此。调整后的深度学习模型在内部集中的AUC高于TMB、TILs和PD-L1;在验证队列中,它优于TILs且与PD-L1相当(AUC,0.67;95%CI,0.60 - 0.74),特异性提高了10个百分点。在验证队列中,将深度学习模型与PD-L1评分相结合的AUC为0.70(95%CI,0.63 - 0.76),优于单独的任何一种标志物,反应率为51%,而单独的PD-L1(≥50%)为41%。
这项队列研究的结果表明,在不同队列的NSCLC患者中,存在一种与ICI反应相关的强大且独立的基于深度学习的特征。这种深度学习模型的临床应用可以提高治疗精度,并更好地识别可能从ICI治疗晚期NSCLC中获益的患者。