Li Wanjin, Su Chen-Yang, Meulenbeld Amber, Jagirdar Huzbah, Janssen Mart P, Swanevelder Ronél, Bruhn Roberta, Kaidarova Zhanna, Bravo Marjorie D, Cao Sophie, Custer Brian, van den Berg Karin, Russell W Alton
Department of Epidemiology, Biostatistics and Occupational Health, McGill School of Population and Global Health, Montréal, Canada.
Quantitative Life Sciences, McGill University, Montréal, Canada.
Lancet Haematol. 2025 Jun;12(6):e431-e441. doi: 10.1016/S2352-3026(25)00068-7.
Machine-learning models directly predicting iron biomarkers after blood donation could help to manage donation-associated iron deficiency and avoid low haemoglobin deferrals. No such models have been externally validated internationally. Our aim was to develop and externally validate machine-learning models predicting returning blood donors' haemoglobin and ferritin.
We developed machine-learning models using retrospective blood donation data. The training cohort included 2425 repeat donors (2007-09 US-based RISE study); external validation used 2014-23 cohorts from the USA, South Africa, and the Netherlands. Models predicted donors' ferritin and haemoglobin at return donations by use of variables that are commonly measured by blood collectors (time until donors return, donation history, demographics, and baseline iron biomarkers). Models were selected via cross-validation and externally validated in donors aged at least 15 years in two contexts: those with baseline ferritin and haemoglobin measured (haemoglobin and ferritin) and those with only baseline haemoglobin measured (haemoglobin only). Model performance was assessed by use of root-mean-square percentage error (RMSPE).
When predicting return haemoglobin in the RISE cohort, model performance was similar in the haemoglobin and ferritin dataset (n=2625 donation visits, RMSPE=6·78) and haemoglobin only dataset (n=3488 donation visits, RMSPE=6·78). In the external datasets, containing 11 000 to 514 000 donations, RMSPE never increased more than 8%. When predicting return ferritin in RISE, performance was better in the haemoglobin and ferritin dataset (RMSPE=14·9) than in the haemoglobin only dataset (RMSPE=27·4). In external validation, RMSPE never increased more than 0·4% and 28% in the haemoglobin-only datasets and the haemoglobin and ferritin datasets, respectively.
Machine-learning models predicting haemoglobin and ferritin at return donations generalised well across diverse settings and could enable individualised approaches to manage iron deficiency while maintaining a sufficient blood supply.
The Association for the Advancement of Blood and Biotherapies.
For the Dutch translation of the abstract see Supplementary Materials section.
直接预测献血后铁生物标志物的机器学习模型有助于管理与献血相关的缺铁情况,并避免因血红蛋白水平低而导致的延期献血。目前尚无此类模型在国际上进行外部验证。我们的目的是开发并外部验证预测再次献血者血红蛋白和铁蛋白水平的机器学习模型。
我们使用回顾性献血数据开发机器学习模型。训练队列包括2425名重复献血者(2007 - 2009年美国的RISE研究);外部验证使用了来自美国、南非和荷兰2014 - 2023年的队列数据。模型通过常用采血机构测量的变量(献血者再次献血的时间、献血历史、人口统计学特征以及基线铁生物标志物)预测献血者再次献血时的铁蛋白和血红蛋白水平。通过交叉验证选择模型,并在至少15岁的献血者中进行外部验证,分为两种情况:测量了基线铁蛋白和血红蛋白的(血红蛋白和铁蛋白)以及仅测量了基线血红蛋白的(仅血红蛋白)。模型性能通过均方根百分比误差(RMSPE)进行评估。
在RISE队列中预测再次献血时的血红蛋白水平时,在血红蛋白和铁蛋白数据集(n = 2625次献血记录,RMSPE = 6.78)和仅血红蛋白数据集(n = 3488次献血记录,RMSPE = 6.78)中,模型性能相似。在包含11000至514000次献血记录的外部数据集中,RMSPE的增加从未超过8%。在RISE队列中预测再次献血时的铁蛋白水平时,血红蛋白和铁蛋白数据集(RMSPE = 14.9)的性能优于仅血红蛋白数据集(RMSPE = 27.4)。在外部验证中,仅血红蛋白数据集和血红蛋白与铁蛋白数据集中,RMSPE的增加分别从未超过0.4%和28%。
预测再次献血时血红蛋白和铁蛋白水平的机器学习模型在不同环境中具有良好的泛化能力,并且能够在维持充足血液供应的同时,采用个性化方法管理缺铁情况。
血液与生物疗法促进协会。
摘要的荷兰语翻译见补充材料部分。