Suppr超能文献

通过流体二极管膜进行空间调控的水热传输,以实现高效太阳能海水淡化和发电。

Spatially regulated water-heat transport by fluidic diode membrane for efficient solar-powered desalination and electricity generation.

作者信息

Cao Yuanhang, Wang Jiemin, Guan Weixin, An Meng, Yan Peng, Li Zhengtong, Zhao Changsheng, Yu Guihua

机构信息

College of Biomedical Engineering, Sichuan University, Chengdu, China.

Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.

出版信息

Nat Commun. 2025 May 30;16(1):5050. doi: 10.1038/s41467-025-60283-6.

Abstract

Interfacial solar-driven evaporation has attracted great research interests, given its high conversion efficiency of solar energy and transformative industrial potential for desalination. However, current evaporators with porous volume remain critical challenges by inherently balancing efficient fluid transport and effective heat localization. Herein, we propose the strategy and design of lightweight, flexible and monolayered fluidic diode membrane-based evaporators, featuring regularly arrayed macropores and dense nanopores on each side. Such a delicate microstructure offers universality in establishing asymmetric channels along macroporous-to-nanoporous to enable the diode-like directional water transport as well as facilitate the heat localization on the nanopores side. Consequently, a high evaporation rate of a maximum 3.82 kg m h can be achieved under 1 sun illumination, exceeding most 2D and 3D evaporators. Besides, the durability and practicability of our evaporators are validated through salt resistance tests, purification experiments among various contaminants, and outdoor evaluations. Moreover, the structure engineering and water-transport optimization of fluidic diode membranes also offer potentials for hydrovoltaic applications, with over 1.6 V generated by tandem devices at the ambient environment. This work provides a concept for designing high-performance monolayered membranes applicable in environmental and energy-related realms.

摘要

界面太阳能驱动蒸发因其高太阳能转换效率和海水淡化的变革性产业潜力而备受研究关注。然而,目前具有多孔结构的蒸发器在固有地平衡高效流体传输和有效热定位方面仍然面临严峻挑战。在此,我们提出了基于轻质、柔性和单层流体二极管膜的蒸发器的策略和设计,其两侧具有规则排列的大孔和致密的纳米孔。这种精细的微观结构在沿大孔到纳米孔建立不对称通道以实现二极管状定向水传输以及促进纳米孔侧的热定位方面具有通用性。因此,在1个太阳光照下可实现高达3.82 kg m² h⁻¹的高蒸发速率,超过了大多数二维和三维蒸发器。此外,我们的蒸发器的耐久性和实用性通过耐盐性测试、各种污染物的净化实验以及户外评估得到了验证。此外,流体二极管膜的结构工程和水传输优化也为水力发电应用提供了潜力,在环境条件下串联装置可产生超过1.6 V的电压。这项工作为设计适用于环境和能源相关领域的高性能单层膜提供了一个概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a144/12125254/c4a6641910c5/41467_2025_60283_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验