i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China.
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Adv Mater. 2023 Oct;35(40):e2304099. doi: 10.1002/adma.202304099. Epub 2023 Aug 23.
The lack of a strong binding mechanism between nanomaterials severely restricts the advantages of the evaporation-driven hydrovoltaic effect in wearable sensing electronics. It is a challenging task to observably improve the mechanical toughness and flexibility of hydrovoltaic devices to match the wearable demand without abandoning the nanostructures and surface function. Here, a flexible tough polyacrylonitrile/alumina (PAN/Al O ) hydrovoltaic coating with both good electricity generation (open-circuit voltage, V ≈ 3.18 V) and sensitive ion sensing (2285 V M for NaCl solutions in 10 to 10 m) capabilities is developed. The porous nanostructure composed of Al O nanoparticles is firmly locked by the strong binding effect of PAN, giving a critical binding force 4 times that of Al O film to easily deal with 9.92 m s strong water-flow impact. Finally, skin-tight and non-contact device structures are proposed to achieve wearable multifunctional self-powered sensing directly using sweat. The flexible tough PAN/Al O hydrovoltaic coating breaks through the mechanical brittleness limitation and broadens the applications of the evaporation-induced hydrovoltaic effect in self-powered wearable sensing electronics.
纳米材料之间缺乏强有力的结合机制严重限制了蒸发驱动水力发电效应在可穿戴传感电子学中的优势。在不放弃纳米结构和表面功能的情况下,显著提高水力发电器件的机械韧性和灵活性以满足可穿戴需求是一项具有挑战性的任务。在这里,开发了一种具有良好发电性能(开路电压,V≈3.18V)和灵敏离子传感性能(NaCl 溶液在 10 到 10-5m 范围内的 2285 V M)的柔性坚韧的聚丙烯腈/氧化铝(PAN/Al2O3)水力发电涂层。由 Al2O3 纳米粒子组成的多孔纳米结构被 PAN 的强结合效应牢固锁定,赋予了 4 倍于 Al2O3 薄膜的临界结合力,从而能够轻松应对 9.92 m s 的强水流冲击。最后,提出了皮肤贴合和非接触式器件结构,以便直接使用汗水实现可穿戴多功能自供电传感。柔性坚韧的 PAN/Al2O3 水力发电涂层突破了机械脆性限制,拓宽了蒸发诱导水力发电效应在自供电可穿戴传感电子学中的应用。