Sayavedra Lizbeth, Yasir Muhammad, Goldson Andrew, Brion Arlaine, Le Gall Gwenaelle, Moreno-Gonzalez Mar, Altera Annalisa, Paxhia Michael D, Warren Martin, Savva George M, Turner A Keith, Beraza Naiara, Narbad Arjan
Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK.
Nat Commun. 2025 May 30;16(1):5049. doi: 10.1038/s41467-025-60180-y.
High-fat diets reshape gut microbiota composition and promote the expansion of Bilophila wadsworthia, a sulfidogenic bacterium linked to inflammation and gut barrier dysfunction. The genetic basis for its colonisation and physiological effects remain poorly understood. Here, we show that B. wadsworthia colonises the gut of germ-free male mice fed a high-fat diet by relying on genes involved in microcompartment formation and anaerobic energy metabolism. Using genome-wide transposon mutagenesis, metatranscriptomics and metabolomics, we identify 34 genes essential for gut colonisation, including two clusters encoding a bacterial microcompartment (BMC), and a NADH dehydrogenase (hdrABC-flxABCD) complex. These systems enable B. wadsworthia to metabolise taurine and isethionate, producing HS, acetate, and ethanol. We further demonstrate that B. wadsworthia can produce and consume ethanol depending on the available electron donors. While B. wadsworthia reached higher abundance and H₂S production in the absence of the simplified microbiota, its co-colonisation with the defined microbial consortium exacerbated host effects, including increased gut permeability, slightly elevated liver ethanol concentrations, and hepatic macrophage infiltration. Our findings reveal how microbial interactions and metabolic flexibility -including using alternative energy sources such as formate- rather than H₂S alone, shape B. wadsworthia's impact on host physiology, with implications for understanding diet-driven microbiome-host interactions.
高脂饮食会重塑肠道微生物群的组成,并促进沃兹沃思嗜胆菌的扩张,这种产硫化物细菌与炎症和肠道屏障功能障碍有关。其定殖的遗传基础和生理效应仍知之甚少。在这里,我们表明,沃兹沃思嗜胆菌通过依赖参与微区室形成和无氧能量代谢的基因,定殖于喂食高脂饮食的无菌雄性小鼠的肠道中。利用全基因组转座子诱变、宏转录组学和代谢组学,我们鉴定出34个肠道定殖所必需的基因,包括两个编码细菌微区室(BMC)的基因簇和一个NADH脱氢酶(hdrABC-flxABCD)复合体。这些系统使沃兹沃思嗜胆菌能够代谢牛磺酸和羟乙磺酸盐,产生硫化氢、乙酸盐和乙醇。我们进一步证明,沃兹沃思嗜胆菌可以根据可用的电子供体产生和消耗乙醇。虽然在没有简化微生物群的情况下,沃兹沃思嗜胆菌的丰度和硫化氢产量更高,但其与特定微生物群落的共定殖加剧了宿主效应,包括肠道通透性增加、肝脏乙醇浓度略有升高以及肝巨噬细胞浸润。我们的研究结果揭示了微生物相互作用和代谢灵活性——包括使用甲酸等替代能源,而不是单独使用硫化氢——如何塑造沃兹沃思嗜胆菌对宿主生理的影响,这对理解饮食驱动的微生物群-宿主相互作用具有重要意义。