Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Cell Host Microbe. 2021 Sep 8;29(9):1378-1392.e6. doi: 10.1016/j.chom.2021.07.004. Epub 2021 Aug 5.
Many genetic and environmental factors increase susceptibility to cognitive impairment (CI), and the gut microbiome is increasingly implicated. However, the identity of gut microbes associated with CI risk, their effects on CI, and their mechanisms remain unclear. Here, we show that a carbohydrate-restricted (ketogenic) diet potentiates CI induced by intermittent hypoxia in mice and alters the gut microbiota. Depleting the microbiome reduces CI, whereas transplantation of the risk-associated microbiome or monocolonization with Bilophila wadsworthia confers CI in mice fed a standard diet. B. wadsworthia and the risk-associated microbiome disrupt hippocampal synaptic plasticity, neurogenesis, and gene expression. The CI is associated with microbiome-dependent increases in intestinal interferon-gamma (IFNg)-producing Th1 cells. Inhibiting Th1 cell development abrogates the adverse effects of both B. wadsworthia and environmental risk factors on CI. Together, these findings identify select gut bacteria that contribute to environmental risk for CI in mice by promoting inflammation and hippocampal dysfunction.
许多遗传和环境因素会增加认知障碍(CI)的易感性,而肠道微生物组也越来越受到关注。然而,与 CI 风险相关的肠道微生物的特征、它们对 CI 的影响及其机制仍不清楚。在这里,我们表明,碳水化合物限制(生酮)饮食会增强间歇性低氧诱导的小鼠认知障碍,并改变肠道微生物组。微生物组耗竭可降低 CI,而将风险相关微生物组移植或用Bilophila wadsworthia 单定植于接受标准饮食的小鼠中可导致 CI。B. wadsworthia 和风险相关微生物组破坏海马突触可塑性、神经发生和基因表达。CI 与微生物组依赖性增加的肠道干扰素-γ(IFNg)产生 Th1 细胞有关。抑制 Th1 细胞发育可消除 B. wadsworthia 和环境风险因素对 CI 的不利影响。总之,这些发现确定了一些肠道细菌,它们通过促进炎症和海马功能障碍,导致小鼠环境因素引发 CI 的风险增加。