Suppr超能文献

基于深度学习的超声微血管成像方法中的运动校正可改善甲状腺结节分类。

Deep learning based motion correction in ultrasound microvessel imaging approach improves thyroid nodule classification.

作者信息

Saini Manali, Larson Nicholas B, Fatemi Mostafa, Alizad Azra

机构信息

Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN-55905, USA.

Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.

出版信息

Sci Rep. 2025 May 30;15(1):19081. doi: 10.1038/s41598-025-02728-y.

Abstract

To address inter-frame motion artifacts in ultrasound quantitative high-definition microvasculature imaging (qHDMI), we introduced a novel deep learning-based motion correction technique. This approach enables the derivation of more accurate quantitative biomarkers from motion-corrected HDMI images, improving the classification of thyroid nodules. Inter-frame motion, often caused by carotid artery pulsation near the thyroid, can degrade image quality and compromise biomarker reliability, potentially leading to misdiagnosis. Our proposed technique compensates for these motion-induced artifacts, preserving the fine vascular structures critical for accurate biomarker extraction. In this study, we utilized the motion-corrected images obtained through this framework to derive the quantitative biomarkers and evaluated their effectiveness in thyroid nodule classification. We segregated the dataset according to the amount of motion into low and high motion containing cases based on the inter-frame correlation values and performed the thyroid nodule classification for the high motion containing cases and the full dataset. A comprehensive analysis of the biomarker distributions obtained after using the corresponding motion-corrected images demonstrates the significant differences between benign and malignant nodule biomarker characteristics compared to the original motion-containing images. Specifically, the bifurcation angle values derived from the quantitative high-definition microvasculature imaging (qHDMI) become more consistent with the usual trend after motion correction. The classification results demonstrated that sensitivity remained unchanged for groups with less motion, while improved by 9.2% for groups with high motion. These findings highlight that motion correction helps in deriving more accurate biomarkers, which improves the overall classification performance.

摘要

为了解决超声定量高清微血管成像(qHDMI)中的帧间运动伪影问题,我们引入了一种基于深度学习的新型运动校正技术。这种方法能够从运动校正后的HDMI图像中得出更准确的定量生物标志物,从而改善甲状腺结节的分类。帧间运动通常由甲状腺附近的颈动脉搏动引起,会降低图像质量并损害生物标志物的可靠性,可能导致误诊。我们提出的技术可补偿这些由运动引起的伪影,保留对准确提取生物标志物至关重要的精细血管结构。在本研究中,我们利用通过该框架获得的运动校正图像来得出定量生物标志物,并评估它们在甲状腺结节分类中的有效性。我们根据帧间相关值将数据集按运动量分为包含低运动量和高运动量的病例,并对包含高运动量的病例和完整数据集进行甲状腺结节分类。对使用相应运动校正图像后获得的生物标志物分布进行的综合分析表明,与原始含运动图像相比,良性和恶性结节生物标志物特征之间存在显著差异。具体而言,从定量高清微血管成像(qHDMI)得出的分叉角度值在运动校正后变得更符合通常趋势。分类结果表明,运动量较小的组的灵敏度保持不变,而运动量较大的组的灵敏度提高了9.2%。这些发现突出表明,运动校正有助于得出更准确的生物标志物,从而提高整体分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3422/12125211/6e2dff22fbfe/41598_2025_2728_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验