Suppr超能文献

一种基于多粒度领域知识的可解释双分支双坐标网络,用于超声图像中甲状腺结节的分类。

An interpretable two-branch bi-coordinate network based on multi-grained domain knowledge for classification of thyroid nodules in ultrasound images.

机构信息

PingAn Technology (Shenzhen) Co., Ltd, 20 Keji South 12th Rd., Shenzhen, 518057, China; Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518061, China.

PingAn Technology (Shenzhen) Co., Ltd, 20 Keji South 12th Rd., Shenzhen, 518057, China.

出版信息

Med Image Anal. 2024 Oct;97:103255. doi: 10.1016/j.media.2024.103255. Epub 2024 Jul 2.

Abstract

Computer-aided diagnosis (CAD) for thyroid nodules has been studied for years, yet there are still reliability and interpretability challenges due to the lack of clinically-relevant evidence. To address this issue, inspired by Thyroid Imaging Reporting and Data System (TI-RADS), we propose a novel interpretable two-branch bi-coordinate network based on multi-grained domain knowledge. First, we transform the two types of domain knowledge provided by TI-RADS, namely region-based and boundary-based knowledge, into labels at multi-grained levels: coarse-grained classification labels, and fine-grained region segmentation masks and boundary localization vectors. We combine these two labels to form the Multi-grained Domain Knowledge Representation (MG-DKR) of TI-RADS. Then we design a Two-branch Bi-coordinate network (TBC-net) which utilizes two branches to predict MG-DKR from both Cartesian and polar images, and uses an attention-based integration module to integrate the features of the two branches for benign-malignant classification. We validated our method on a large cohort containing 3245 patients (with 3558 nodules and 6466 ultrasound images). Results show that our method achieves competitive performance with AUC of 0.93 and ACC of 0.87 compared with other state-of-the-art methods. Ablation experiment results demonstrate the effectiveness of the TBC-net and MG-DKR, and the knowledge attention map from the integration module provides the interpretability for benign-malignant classification.

摘要

计算机辅助诊断(CAD)在甲状腺结节领域已经研究多年,但由于缺乏临床相关证据,其可靠性和可解释性仍然存在挑战。为了解决这个问题,我们受甲状腺影像报告和数据系统(TI-RADS)的启发,提出了一种新的基于多粒度领域知识的可解释双分支双坐标网络。首先,我们将 TI-RADS 提供的两种类型的领域知识(基于区域和基于边界的知识)转化为多粒度的标签:粗粒度分类标签、细粒度的区域分割掩模和边界定位向量。我们将这两个标签结合起来形成 TI-RADS 的多粒度领域知识表示(MG-DKR)。然后,我们设计了一个双分支双坐标网络(TBC-net),它利用两个分支从笛卡尔和极坐标图像预测 MG-DKR,并使用基于注意力的集成模块来集成两个分支的特征,以进行良恶性分类。我们在一个包含 3245 名患者(3558 个结节和 6466 个超声图像)的大队列中验证了我们的方法。结果表明,与其他最先进的方法相比,我们的方法在 AUC 为 0.93 和 ACC 为 0.87 时具有竞争力。消融实验结果表明了 TBC-net 和 MG-DKR 的有效性,以及集成模块的知识注意力图为良恶性分类提供了可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验