Ghannoum Rim, Taha Nourhan, Gaviria David D, Rajha Hiba N, Darra Nada El, Albarqouni Shadi
Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut, 1107 2809, Lebanon.
Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
Sci Rep. 2025 May 30;15(1):19000. doi: 10.1038/s41598-025-01936-w.
The harvesting time of pomegranates is crucial for maximizing their health benefits and market value. However, traditional methods often fail to consider the intricate interactions between environmental conditions and fruit maturity. This study is the first of its kind in Lebanon to address this limitation by applying advanced machine learning techniques to predict key food quality indicators, which can aid in forecasting or determining the optimal harvesting date. The focus is on technological and phenolic maturity. Over three months, 548 pomegranates were meticulously harvested from three distinct geographic regions in Lebanon: Hasbaya, El Jahliye, and Rachiine. By integrating environmental, physical, and geographical data, we developed predictive models, including Linear Regression (LR) and Multi-Layer Perceptron (MLP) Regressor, to estimate key food quality indicators such as Total Soluble Solids (TSS), Titratable Acidity (TA), Maturity Index (MI), phenolic content, and Color Intensity (CI). Our results demonstrated that the MLP regressor achieved high predictive accuracy, with an R-squared value of 0.84 for TA, making it a reliable tool for predicting acidity levels. The model also showed strong performance in predicting phenolic content and color intensity, with R-squared values of 0.70 and 0.65 respectively, and an average classification accuracy of 71% for categorizing polyphenol levels. Principal Component Analysis (PCA) revealed significant geographic variation in phenolic content. In El Jahliye, phenolic levels ranged from low (<185 mg Gallic Acid Equivalent (GAE) per yield of juice) to moderate (185-400 mg GAE/yield of juice). In Rachiine, levels ranged from moderate to high (>400 mg GAE/yield of juice), while Hasbaya displayed all three phenolic content levels. These findings underscore the importance of region-specific harvesting strategies. As the first study in Lebanon to utilize machine learning for predicting food quality indicators in pomegranates, it provides a novel, data-driven approach to linking these indicators with optimal harvest timing. By accurately forecasting maturity-related metrics using simple physical, geographical, and environmental features, this study offers significant implications for refining agricultural practices in Lebanon and other similar agro-ecological regions, enhancing product quality and market value.
石榴的收获时间对于最大化其健康益处和市场价值至关重要。然而,传统方法往往未能考虑环境条件与果实成熟度之间的复杂相互作用。本研究是黎巴嫩首例通过应用先进的机器学习技术来预测关键食品质量指标,以解决这一局限性的研究,这些指标有助于预测或确定最佳收获日期。重点在于技术成熟度和酚类成熟度。在三个月的时间里,从黎巴嫩三个不同的地理区域——哈斯巴亚、贾利耶和平原地区精心收获了548个石榴。通过整合环境、物理和地理数据,我们开发了预测模型,包括线性回归(LR)和多层感知器(MLP)回归器,以估计关键食品质量指标,如总可溶性固形物(TSS)、可滴定酸度(TA)、成熟指数(MI)、酚类含量和颜色强度(CI)。我们的结果表明,MLP回归器具有较高的预测准确性,TA的决定系数(R平方)值为0.84,使其成为预测酸度水平的可靠工具。该模型在预测酚类含量和颜色强度方面也表现出色,R平方值分别为0.70和0.65,并且对多酚水平进行分类的平均分类准确率为71%。主成分分析(PCA)揭示了酚类含量存在显著的地理差异。在贾利耶,酚类水平从低(每果汁产量<185毫克没食子酸当量(GAE))到中等(185 - 400毫克GAE/果汁产量)不等。在平原地区,水平从中等到高(>400毫克GAE/果汁产量),而哈斯巴亚则呈现出所有三种酚类含量水平。这些发现强调了特定区域收获策略的重要性。作为黎巴嫩首例利用机器学习预测石榴食品质量指标的研究,它提供了一种新颖的、数据驱动的方法,将这些指标与最佳收获时机联系起来。通过使用简单的物理、地理和环境特征准确预测与成熟度相关的指标,本研究对改进黎巴嫩和其他类似农业生态区域的农业实践、提高产品质量和市场价值具有重要意义。