Astero Maryam, Rousu Juho
Computer Science, Aalto University, Konemiehentie 2, 02150, Espoo, Finland.
J Cheminform. 2025 May 30;17(1):87. doi: 10.1186/s13321-025-01030-3.
Atom mapping involves identifying the correspondence between individual atoms in reactant molecules and their counterparts in product molecules. This process is crucial for gaining deeper insight into reaction mechanisms, such as defining reaction templates and determining which chemical bonds are formed or broken during a reaction. However, reliable atom mapping data are often limited or incomplete within chemical databases, rendering manual annotation impractical for large-scale datasets. To address this limitation, we propose the Symmetry-Aware Multitask Atom Mapping Network (SAMMNet), a model designed to automatically infer atom correspondences by incorporating an auxiliary self-supervised task during training. SAMMNet employs molecular graph representations and leverages graph neural networks to capture both general and task-specific features, enabling enhanced predictive performance. Our experimental results demonstrate that the multitask learning framework, coupled with symmetry-aware atom mapping, improves accuracy and robustness in atom mapping predictions. This makes our method a promising advancement for computational chemistry and related fields.
原子映射涉及识别反应物分子中的单个原子与其在产物分子中的对应原子之间的对应关系。这一过程对于深入了解反应机制至关重要,例如定义反应模板以及确定反应过程中形成或断裂了哪些化学键。然而,化学数据库中的可靠原子映射数据往往有限或不完整,这使得手动注释大规模数据集变得不切实际。为了解决这一限制,我们提出了对称感知多任务原子映射网络(SAMMNet),这是一种通过在训练过程中纳入辅助自监督任务来自动推断原子对应关系的模型。SAMMNet采用分子图表示,并利用图神经网络来捕获一般特征和特定任务特征,从而提高预测性能。我们的实验结果表明,多任务学习框架与对称感知原子映射相结合,提高了原子映射预测的准确性和鲁棒性。这使得我们的方法在计算化学及相关领域有了很有前景的进展。