Suppr超能文献

基于深度学习优化太赫兹成像的小麦早期萌发无损检测

Non-destructive detection of early wheat germination via deep learning-optimized terahertz imaging.

作者信息

Li Guangming, Ge Hongyi, Jiang Yuying, Zhang Yuan, Jin Xi

机构信息

Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou, 450001, China.

Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou, 450001, China.

出版信息

Plant Methods. 2025 May 30;21(1):75. doi: 10.1186/s13007-025-01393-6.

Abstract

Wheat, a major global cereal crop, is prone to quality degradation from early sprouting when stored improperly, resulting in substantial economic losses. Traditional methods for detecting early sprouting are labor-intensive and destructive, underscoring the need for rapid, non-destructive alternatives. Terahertz (THz) technology provides a promising solution due to its ability to perform non-invasive imaging of internal structures. However, current THz imaging techniques are limited by low image resolution, which restricts their practical application. We address these challenges by proposing an advanced deep learning framework for THz image classification of early sprouting wheat. We first develop an Enhanced Super-Resolution Generative Adversarial Network (AESRGAN) to improve the resolution of THz images, integrating an attention mechanism to focus on critical image regions. This model achieves a 0.76 dB improvement in Peak Signal-to-Noise Ratio (PSNR). Subsequently, we introduce the EfficientViT-based YOLO V8 classification model, incorporating a Depthwise Separable Attention (C2F-DSA) module, and further optimize the model using the Gazelle Optimization Algorithm (GOA). Experimental results demonstrate the GOA-EViTDSA-YOLO model achieves an accuracy of 97.5% and a mean Average Precision (mAP) of 0.962. The model is efficient and significantly enhances the classification of early sprouting wheat compared to other deep learning models.

摘要

小麦是全球主要的谷类作物,储存不当易因早期发芽导致品质下降,造成重大经济损失。传统的早期发芽检测方法劳动强度大且具有破坏性,这凸显了对快速、非破坏性替代方法的需求。太赫兹(THz)技术因其能够对内部结构进行非侵入式成像而提供了一个有前景的解决方案。然而,当前的太赫兹成像技术受限于低图像分辨率,这限制了它们的实际应用。我们通过提出一种用于早期发芽小麦太赫兹图像分类的先进深度学习框架来应对这些挑战。我们首先开发了一种增强超分辨率生成对抗网络(AESRGAN)来提高太赫兹图像的分辨率,集成了一种注意力机制以聚焦于关键图像区域。该模型在峰值信噪比(PSNR)上提高了0.76 dB。随后,我们引入了基于高效视觉Transformer(EfficientViT)的YOLO V8分类模型,并入了深度可分离注意力(C2F-DSA)模块,并使用瞪羚优化算法(GOA)进一步优化该模型。实验结果表明,GOA-EViTDSA-YOLO模型的准确率达到97.5%,平均精度均值(mAP)为0.962。该模型效率高,与其他深度学习模型相比,显著提高了早期发芽小麦的分类能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2bc/12125745/a301dd83fbb4/13007_2025_1393_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验